56 research outputs found

    The poly-omics of ageing through individual-based metabolic modelling

    Get PDF
    Abstract Background Ageing can be classified in two different ways, chronological ageing and biological ageing. While chronological age is a measure of the time that has passed since birth, biological (also known as transcriptomic) ageing is defined by how time and the environment affect an individual in comparison to other individuals of the same chronological age. Recent research studies have shown that transcriptomic age is associated with certain genes, and that each of those genes has an effect size. Using these effect sizes we can calculate the transcriptomic age of an individual from their age-associated gene expression levels. The limitation of this approach is that it does not consider how these changes in gene expression affect the metabolism of individuals and hence their observable cellular phenotype. Results We propose a method based on poly-omic constraint-based models and machine learning in order to further the understanding of transcriptomic ageing. We use normalised CD4 T-cell gene expression data from peripheral blood mononuclear cells in 499 healthy individuals to create individual metabolic models. These models are then combined with a transcriptomic age predictor and chronological age to provide new insights into the differences between transcriptomic and chronological ageing. As a result, we propose a novel metabolic age predictor. Conclusions We show that our poly-omic predictors provide a more detailed analysis of transcriptomic ageing compared to gene-based approaches, and represent a basis for furthering our knowledge of the ageing mechanisms in human cells

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Recent advances in studies of polymicrobial interactions in oral biofilms

    Get PDF
    The oral cavity supports a complex and finely balanced consortium of microbial species, many of which cooperate within structured biofilms. These communities develop through multitudinous synergistic and antagonistic interspecies relationships. Changes in the dynamics of oral microbial populations are associated with the transition from healthy teeth and gums to dental caries, gingivitis and periodontitis. Understanding the ecology of oral biofilm communities, and how different species communicate within a given host, will inform new strategies for treatment and prevention of oral diseases. Advances in sequencing technologies have fuelled an increasing trend towards global genomic and proteomic approaches to determine the key factors that initiate oral diseases. Whilst metabolic profiling seeks to identify phenotypic changes of whole microbial communities, transcriptomic studies are exploring their complex interactions with each other and the host. This review discusses the most recent in vitro and in vivo studies of interspecies interactions within polymicrobial oral biofilms

    Uniendo ingeniería y ecología: la protección costera basada en ecosistemas

    Get PDF
    En un contexto de crecientes impactos y riesgos socio-económicos en las costas del planeta, la protección costera basada en ecosistemas surge como un nuevo paradigma que une los principios de protección, sostenibilidad y resiliencia, a la vez que proporciona múltiples beneficios. Este artículo ofrece una perspectiva sobre qué son y cómo se pueden utilizar las defensas naturales en el diseño, planificación y gestión de costas. La política pública muestra un creciente interés por su implementación general y el cuerpo de conocimiento y experiencia alrededor de la también denominada infraestructura ?verde? es creciente, pero aún existen importantes barreras que salvar. Una de ellas es estandarizar su diseño en términos ingenieriles, así como reconocer los aspectos que los diferencian respecto a enfoques tradicionales. La adaptación climática y la reducción de riesgos son áreas en las que su utilización puede ser más significativa, debido a la variedad de servicios que ofrecen. Tanto desde el punto de vista técnico como económico, existen argumentos sólidos para evitar la degradación de los ecosistemas, avanzando su restauración y conservación, como también desde la perspectiva de la defensa de las costas.In a context of increasing socio-economic impacts and risks in the coastal areas of the planet, coastal protection based on ecosystem features becomes a new paradigm that combines the principles of conservation, sustainability and resilience, while providing multiple benefits. This paper provides a perspective on what these are and how they can be used in the design, planning and management of the coastal zones. Policy-makers are calling for further uptake and implementation across the board and the body of knowledge and experience around the socalled ?green? infrastructure is growing, but there are still major barriers for a widespread uptake. One of them is to standardize designs in engineering terms, recognizing the different characteristics compared to traditional engineering solutions. Climate adaptation and risk reduction are areas where its use may be more significant, for the variety of services they offer. Both technically and economically, there are strong arguments to prevent degradation of ecosystems and to advance in their restoration and conservation, as well as from a coastal defense perspective

    Disseminated histoplasmosis: an atypical cutaneous presentation

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]
    corecore