146 research outputs found

    Influenza H5 Hemagglutinin DNA Primes the Antibody Response Elicited by the Live Attenuated Influenza A/Vietnam/1203/2004 Vaccine in Ferrets

    Get PDF
    Priming immunization plays a key role in protecting individuals or populations to influenza viruses that are novel to humans. To identify the most promising vaccine priming strategy, we have evaluated different prime-boost regimens using inactivated, DNA and live attenuated vaccines in ferrets. Live attenuated influenza A/Vietnam/1203/2004 (H5N1) candidate vaccine (LAIV, VN04 ca) primed ferrets efficiently while inactivated H5N1 vaccine could not prime the immune response in seronegative ferrets unless an adjuvant was used. However, the H5 HA DNA vaccine alone was as successful as an adjuvanted inactivated VN04 vaccine in priming the immune response to VN04 ca virus. The serum antibody titers of ferrets primed with H5 HA DNA followed by intranasal vaccination of VN04 ca virus were comparable to that induced by two doses of VN04 ca virus. Both LAIV-LAIV and DNA-LAIV vaccine regimens could induce antibody responses that cross-neutralized antigenically distinct H5N1 virus isolates including A/HongKong/213/2003 (HK03) and prevented nasal infection of HK03 vaccine virus. Thus, H5 HA DNA vaccination may offer an alternative option for pandemic preparedness

    Male mating biology

    Get PDF
    Before sterile mass-reared mosquitoes are released in an attempt to control local populations, many facets of male mating biology need to be elucidated. Large knowledge gaps exist in how both sexes meet in space and time, the correlation of male size and mating success and in which arenas matings are successful. Previous failures in mosquito sterile insect technique (SIT) projects have been linked to poor knowledge of local mating behaviours or the selection of deleterious phenotypes during colonisation and long-term mass rearing. Careful selection of mating characteristics must be combined with intensive field trials to ensure phenotypic characters are not antagonistic to longevity, dispersal, or mating behaviours in released males. Success has been achieved, even when colonised vectors were less competitive, due in part to extensive field trials to ensure mating compatibility and effective dispersal. The study of male mating biology in other dipterans has improved the success of operational SIT programmes. Contributing factors include inter-sexual selection, pheromone based attraction, the ability to detect alterations in local mating behaviours, and the effects of long-term colonisation on mating competitiveness. Although great strides have been made in other SIT programmes, this knowledge may not be germane to anophelines, and this has led to a recent increase in research in this area

    A Plant DJ-1 Homolog Is Essential for Arabidopsis thaliana Chloroplast Development

    Get PDF
    Protein superfamilies can exhibit considerable diversification of function among their members in various organisms. The DJ-1 superfamily is composed of proteins that are principally involved in stress response and are widely distributed in all kingdoms of life. The model flowering plant Arabidopsis thaliana contains three close homologs of animal DJ-1, all of which are tandem duplications of the DJ-1 domain. Consequently, the plant DJ-1 homologs are likely pseudo-dimeric proteins composed of a single polypeptide chain. We report that one A. thaliana DJ-1 homolog (AtDJ1C) is the first DJ-1 homolog in any organism that is required for viability. Homozygous disruption of the AtDJ1C gene results in non-viable, albino seedlings that can be complemented by expression of wild-type or epitope-tagged AtDJ1C. The plastids from these dj1c plants lack thylakoid membranes and granal stacks, indicating that AtDJ1C is required for proper chloroplast development. AtDJ1C is expressed early in leaf development when chloroplasts mature, but is downregulated in older tissue, consistent with a proposed role in plastid development. In addition to its plant-specific function, AtDJ1C is an atypical member of the DJ-1 superfamily that lacks a conserved cysteine residue that is required for the functions of most other superfamily members. The essential role for AtDJ1C in chloroplast maturation expands the known functional diversity of the DJ-1 superfamily and provides the first evidence of a role for specialized DJ-1-like proteins in eukaryotic development

    Capillary Regeneration in Scleroderma: Stem Cell Therapy Reverses Phenotype?

    Get PDF
    BACKGROUND. Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS. We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue), antiangiogenic interferon α (overexpressed in the scleroderma dermis) and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon α and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE. These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease. Since rarefaction has been little studied, these data may have implications for other diseases characterized by loss of capillaries including hypertension, congestive heart failure and scar formation.Scleroderma Research Foundatio

    Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil

    Get PDF
    Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars

    Gamma entrainment frequency affects mood, memory and cognition: an exploratory pilot study

    Get PDF
    Here we provide evidence with an exploratory pilot study that through the use of a Gamma 40 Hz entrainment frequency, mood, memory and cognition can be improved with respect to a 9-participant cohort. Participants constituted towards three binaural entrainment frequency groups: the 40 Hz, 25 Hz and 100 Hz. Participants attended a total of eight entrainment frequency sessions twice over the duration of a 4-week period. Additionally, participants were assessed based on their cognitive abilities, mood as well as memory, where the cognitive and memory assessments occurred before and after a 5-min binaural beat stimulation. The mood assessment scores were collected from sessions 1, 4 and 8, respectively. With respect to the Gamma 40 Hz entrainment frequency population, we observed a mean improvement in cognitive scores, elevating from 75% average to 85% average upon conclusion of the experimentation at weak statistical significance (α = 0.10, p = 0.076). Similarly, memory score improvements at a greater significance (α = 0.05, p = 0.0027) were noted, elevating from an average of 87% to 95%. In pertinence to the mood scores, a negative correlation across all populations were noted, inferring an overall increase in mood due to lower scores correlating with elevated mood. Finally, correlation analysis revealed a stronger R2 value (0.9838) within the 40 Hz group between sessions as well as mood score when compared across the entire frequency group cohort
    • …
    corecore