1,376 research outputs found

    Surveyor batteries Final engineering report

    Get PDF
    Design and performance of Surveyor spacecraft silver-zinc main batter

    Assessing Simulations of Imperial Dynamics and Conflict in the Ancient World

    Get PDF

    Random walks near Rokhsar-Kivelson points

    Full text link
    There is a class of quantum Hamiltonians known as Rokhsar-Kivelson(RK)-Hamiltonians for which static ground state properties can be obtained by evaluating thermal expectation values for classical models. The ground state of an RK-Hamiltonian is known explicitly, and its dynamical properties can be obtained by performing a classical Monte Carlo simulation. We discuss the details of a Diffusion Monte Carlo method that is a good tool for studying statics and dynamics of perturbed RK-Hamiltonians without time discretization errors. As a general result we point out that the relation between the quantum dynamics and classical Monte Carlo simulations for RK-Hamiltonians follows from the known fact that the imaginary-time evolution operator that describes optimal importance sampling, in which the exact ground state is used as guiding function, is Markovian. Thus quantum dynamics can be studied by a classical Monte Carlo simulation for any Hamiltonian that is free of the sign problem provided its ground state is known explicitly.Comment: 12 pages, 9 figures, RevTe

    Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants

    Get PDF
    The origin of plants and their colonization of land fundamentally transformed the terrestrial environment. Here we elucidate the basis of this formative episode in Earth history through patterns of lineage, gene and genome evolution. We use new fossil calibrations, a relative clade age calibration (informed by horizontal gene transfer) and new phylogenomic methods for mapping gene family origins. Distinct rooting strategies resolve tracheophytes (vascular plants) and bryophytes (non-vascular plants) as monophyletic sister groups that diverged during the Cambrian, 515–494 million years ago. The embryophyte stem is characterized by a burst of gene innovation, while bryophytes subsequently experienced an equally dramatic episode of reductive genome evolution in which they lost genes associated with the elaboration of vasculature and the stomatal complex. Overall, our analyses reveal that extant tracheophytes and bryophytes are both highly derived from a more complex ancestral land plant. Understanding the origin of land plants requires tracing character evolution across a diversity of modern lineages

    Public crises, public futures

    Get PDF
    This article begins to map out a novel approach to analyzing contemporary contexts of public crisis, relationships between them and possibilities that these scenes hold out for politics. The article illustrates and analyses a small selection of examples of these kinds of contemporary scenes and calls for greater attention to be given to the conditions and consequences of different forms and practices of public and political mediation. In offering a three-fold typology to delineate differences between ‘abject’, ‘audience’ and ‘agentic’ publics the article begins to draw out how political and public futures may be seen as being bound up with how the potentialities, capacities and qualities that publics are imagined to have and resourced to perform. Public action and future publics are therefore analysed here in relation to different versions of contemporary crisis and the political concerns and publics these crises work to articulate, foreground and imaginatively and practically support

    Maximal entropy random walk in community finding

    Full text link
    The aim of this paper is to check feasibility of using the maximal-entropy random walk in algorithms finding communities in complex networks. A number of such algorithms exploit an ordinary or a biased random walk for this purpose. Their key part is a (dis)similarity matrix, according to which nodes are grouped. This study encompasses the use of the stochastic matrix of a random walk, its mean first-passage time matrix, and a matrix of weighted paths count. We briefly indicate the connection between those quantities and propose substituting the maximal-entropy random walk for the previously chosen models. This unique random walk maximises the entropy of ensembles of paths of given length and endpoints, which results in equiprobability of those paths. We compare performance of the selected algorithms on LFR benchmark graphs. The results show that the change in performance depends very strongly on the particular algorithm, and can lead to slight improvements as well as significant deterioration.Comment: 7 pages, 4 figures, submitted to European Physical Journal Special Topics following the 4-th Conference on Statistical Physics: Modern Trends and Applications, July 3-6, 2012 Lviv, Ukrain

    What We Know and What We Don't Know About the Universe

    Full text link
    I present a non-technical and necessarily biased and incomplete overview of our present understanding of the physical universe and its constituents, emphasizing what we have learned from the explosive growth in cosmological and astrophysical data acquisition and some of the key open questions that remain. The topics are organized under the labels space, time, and matter. Most bibliographical references are for the non-expert.Comment: 5 pages, LaTeX. Keynote address at the International Workshop on Astronomy and Relativistc Astrophysics, October 12-16, Olinda, Brazil. To be published in the proceedings (Int. J. Mod. Phys. D

    A Natural Framework for Solar and 17 keV Neutrinos

    Full text link
    Motivated by recent experimental claims for the existence of a 17 keV neutrino and by the solar neutrino problem, we construct a class of models which contain in their low-energy spectrum a single light sterile neutrino and one or more Nambu-Goldstone bosons. In these models the required pattern of breaking of lepton-number symmetry takes place near the electroweak scale and all mass heirarchies are technically natural. The models are compatible with all cosmological and astrophysical constraints, and can solve the solar neutrino problem via either the MSW effect or vacuum oscillations. The deficit in atmospheric muon neutrinos seen in the Kamiokande and IMB detectors can also be explained in these models.Comment: 23 page
    corecore