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The development of models to capture large-scale dynamics in 
human history is one of the core contributions of cliodynamics. Most 
often, these models are assessed by their predictive capability on 
some macro-scale and aggregated measure and compared to 
manually curated historical data. In this report, we consider the 
model from Turchin et al. (2013), where the evaluation is done on the 
prediction of “imperial density”: the relative frequency with which a 
geographical area belonged to large-scale polities over a certain time 
window. We implement the model and release both code and data for 
reproducibility. We then assess its behavior against three historical 
datasets: the relative size of simulated polities versus historical ones; 
the spatial correlation of simulated imperial density with historical 
population density; and the spatial correlation of simulated conflict 
versus historical conflict. At the global level, we show good 
agreement with population density (𝑅2 < 0.75), and some 
agreement with historical conflict in Europe (𝑅2 < 0.42). The model 
instead fails to reproduce the historical shape of individual polities. 
Finally, we tweak the model to behave greedily by having polities 
preferentially attacking weaker neighbors. Results significantly 
degrade, suggesting that random attacks are a key trait of the original 
model. We conclude by proposing a way forward by matching the 
probabilistic imperial strength from simulations to inferred 
networked communities from real settlement data. 

Introduction 

Recent work has highlighted how complex societies all share, to some extent, a set 
of evolutionary characteristics (Turchin et al. 2018). Consequently, the causal 
factors which (partially) explain how they came to be might be (partially) shared 



Madge et al.: Simulations of Imperial Dynamics. Cliodynamics 10:2 (2019) 

100 
 

in turn. In particular, competition (e.g., war) and cooperation (e.g., trade) across 
polities play a crucial role in the emergence, evolution or disappearance of complex 
societies. Previous work has considered simple and relatively isolated systems of 
coupled equations in order to model population and warfare dynamics (Turchin et 
al. 2006; Wilson 2016). Agent-based models have also been considered in order to 
simulate the emergence of cooperative social behavior (Burtsev and Turchin 2006) 
and have found wider application in the social sciences (Fonoberova et al. 2012; 
Gavrilets and Fortunato 2014). 
 We start with a brief summary of Turchin et al. (2013), which in turn 
consolidated and developed on substantial previous work (Turchin 2009, 2011, 
2013; Turchin and Gavrilets 2009; Turchin et al. 2006), including a simpler agent-
based model with similar objectives (Gavrilets et al. 2010). The central premise of 
Turchin et al.’s (2013) work is to put forward and test a model for the evolution of 
large-scale complex societies in the Old World (1500 BCE to 1500 CE, approx-
imately). Their key hypothesis is that intense competition in the form of warfare 
led to the development of institutions which supported large-scale complex 
societies. It is a given that societies compete, warfare being just one way. Warfare 
intensity is in turn hypothesized to depend primarily on the spread of military 
technologies and on geographic factors, such as terrain. Other reasonable and 
competing hypotheses have been put forward (Gowdy and Krall 2016; Norenzayan 
et al. 2016; Richerson et al. 2016). For a recent review, see Mesoudi (2017). 
Turchin et al. (2013) consider cultural multilevel selection as their theoretical 
framework: there is a natural tendency for complex societies to lose their 
ultrasocial institutions to the advantage of local ones, in the absence of external 
competition demanding that they muster the resources of the given society more 
broadly. “Ultrasocial” here stands for any kind of coordination effort, e.g., 
institutions, undertaken by individuals who are not genetically proximally 
correlated (i.e., beyond the family, tribe, etc.). 
 In the proposed model, the Afro-Eurasian landmass is divided into 100x100 km 
squares, each characterized by its biome (desert, steppe or agriculture) and 
average elevation. The range of agriculture cells expands over time, according to 
historical processes. Each cell possesses an individual polity at the beginning of the 
simulation, while military technologies are endowed to cells adjacent to the 
steppes and then gradually diffuse out via conflict. Military technologies are 
represented as a boolean vector in every cell. Each cell is further endowed with an 
ultrasocial traits boolean vector, which can be gained by occupying cells with 
existing traits or with a very low probability over time, and which naturally 
disappear (with higher probability than appearance) over time, according to the 
cultural multilevel selection framework. Polities can wage war, giving them a 
chance to enlarge their pool of controlled cells and to acquire or spread ultrasocial 
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traits. War happens randomly over borders of agricultural to agricultural cells and 
is decided by the relative size of the two polities and their ultrasociality traits. 
Military technologies, which diffuse over time from the steppes to agricultural 
cells, increase the probability of a newly conquered cell undergoing ethnocide, 
which causes the ultrasociality traits of the winner to be copied in the newly 
conquered cell. The causal chain embedded in such a model is as follows: spread of 
military technologies, intensification of warfare, evolution of ultrasocial traits, 
emergence of large-scale societies. 
 The model was tested empirically by its capacity to simulate how frequently 
cells belonged to large-scale polities over time, producing the “imperial density” 
map, using the coefficient of determination (𝑅2) of a linear regression between the 
true and simulated data for every cell. A large-scale polity is considered as one with 
a controlled territory of at least 100,000 km2 (10 cells) for at least 100 contiguous 
years. As a consequence of expansionist warfare, cells that are part of large polities 
are also more likely to possess ultrasocial traits. Turchin et al. (2013)’s full model 
accounts for 65% of the variance in historical data, while a model without elevation 
(a key geographic feature) explains 48% of it. A model where military technologies 
are seeded randomly or with equal intensity everywhere is not predictive, as is a 
model where military technology has no impact on ethnocide. These last tests are 
particularly informative, as they rule out the possibility of artefact results caused 
by the shape of the grid and further reinforce the authors’ hypothesis that steppes 
and military technology diffusion are key drivers. In Turchin et al.’s (2013) sim-
ulation, time is discrete and each time-step is of two years (3000 years in total). 
The full choice of parameters was found by using a mix of relatively uninformative 
priors and grid-search fitting against ground truth. Importantly, polities can 
collapse with low probability, positively correlated with their size and negatively 
correlated with their ultrasocial traits. Further tests controlling for spatial 
autocorrelation highlight how the single best predictive variables are horse 
warfare and distance from the steppes, supporting the initial hypothesis of the 
authors. While Turchin at al.’s (2013) model has good explanatory power with 
respect to average imperial density, it remains unknown whether it is able to 
account for the following historical aspects: size and shape of large-scale polities, 
relation of large-scale polities with densely inhabited areas (cities) and actual 
areas of conflict. 
 In this report, our goal is threefold: a) to implement and reproduce Turchin et 
al.’s (2013) model and results, releasing code and data openly; b) to assess its 
capacity to simulate further important historical aspects rather than just average 
imperial density; and c) to suggest possible future directions for improvement in 
view of this assessment. Our intent here is thus to open and problematize, 
suggesting possible improvements. 
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We note that subsequent work from Bennett (2016), expanding from Bennett 
(2015), proposed a model which explicitly included demographic-structural fac-
tors, in order to address the following limitations in Turchin et al. (2013): demo-
graphic pressure and its relation to structural aspects of states and internal 
collapse due to civil or interstate war. While this model is able to simulate well the 
total area and population part of large-scale polities, it does not embed any change 
which would improve results on the above-mentioned aspects. As a consequence, 
we focus on assessing Turchin et al.’s (2013) model here.  
 Our contribution is organized as follows. We start by assessing our replication 
of results from Turchin et al. (2013), then expand on the assessment of their model. 
We further explore results for a greedy version of the model, and conclude by 
suggesting directions for future work. More details on our implementation of 
Turchin et al.’s (2013) model can be found in the appendix. 

Baseline Evaluation 
We first verified our implementation by comparing imperial density results, 
averaged over 20 independent simulations in the date ranges 1500 to 500 BCE, 
500 BCE to 500 CE and 500 to 1500 CE, with those of Turchin et al.’s (2013).  
 Figure 1 shows the spatial distribution of imperial density for each of the 
aforementioned three eras. The left column shows the historical imperial density, 
the center Turchin et al.’s (2013) results and the right ours. From visual inspection 
of the two rightmost columns, it is clear that our simulation very closely matches 
the original imperial density profile. Across all eras the locations and shapes of 
regions of high imperial density are consistent. Furthermore, the spread of 
imperial density outwards from the steppe regions in our simulations occurs at the 
same pace as the original model. Even more subtle patterns, such as the 
distribution of imperial density in sub-Saharan Africa and its lack on the Tibetan 
Plateau and in the Himalayas, are well reproduced. 
 To further validate our simulations we carried out a linear regression analysis 
of the historical imperial density for each era against our simulated imperial 
density for the same era. In the regression, all land cells were considered (i.e., 
including desert cells, which are forbidden from belonging to polities). Table 1 
shows the 𝑅2 values for each regression alongside those obtained by Turchin et al. 
(2013). Our values compare favorably to those reported in the original work, with 
the exception of the era 1500 to 500 BCE, for which our correlation is higher.  
 Although it is not perfect, we consider our replication of Turchin et al.’s (2013) 
results sufficient for our purposes. Our justification for this is twofold. First, we 
consider the qualitative comparison of the model (Figure 1) to be very strong and 
our implementation therefore accurately models all important aspects of the 
original model. Second, the model has a large number of parameters which might 



Madge et al.: Simulations of Imperial Dynamics. Cliodynamics 10:2 (2019) 

103 
 

justify minor differences in results. These, combined with some discrepancies in 
the description of the model in the paper and in the original code, still present a 
number of variations to investigate when seeking better fits (see Appendix). 
 

 
Figure 1. Imperial density data (left), Turchin et al. (2013) simulated model 
(center), and our reproduction of the simulated model (right); for three epochs 
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Table 1. Correlation value with real imperial strength data for Turchin et al.’s and 
our work 

Era 𝑅2 Turchin et al. 𝑅2 this work 𝑅2 greedy attack 
model 

1500–500 BCE 0.56 0.66 0.22 
500 BCE–500 CE 0.65 0.66 0.39 
500–1500 CE 0.48 0.49 0.26 

Extended Evaluation 

After having confirmed that our implementation closely replicated the results of 
the original model, we moved on to further validate the model using historical 
datasets. Firstly, we sought to investigate the shape and distribution of polities 
compared to known historical empires. Initially, we surveyed the polities within 
the historical extent of the Roman Empire, as determined by annotated data from 
Turchin et al. (2013). This region was determined from the same historical polities 
data used to determine the historical imperial density in Turchin et al. (2013). 
From our initial simulations it became clear that in any given simulation it is 
unreasonable to expect the polities to closely match historical empires in size, 
shape or lifetime (also cf. Bennett 2016). In fact, the simulation tends to be 
dominated by a large number of small or single-cell polities at any time. Two 
typical histograms of the distribution of polity sizes within the historical Roman 
Empire in the years 100 CE and 300 CE are given in Figure 2. The left column gives 
the number of polities of a given size, whereas the right gives the number of cells 
in polities of a given size. From these plots it is clear that large polities are quite 
rare and though they may grow to a size where they contain a large number of the 
available cells, they are still typically dwarfed by small and single-cell polities. This 
effect is driven by the high probability of polity disintegration, at least 5% at every 
step. 
 As a result of this observation, we decided not to continue pursuing analysis 
involving the specific shape or size of individual polities. However, we do feel that 
this process was useful in outlining the limitations and appropriate application of 
the original model. While we cannot expect specific polities in a single simulation 
to represent any particular historical state or empire, it is clear that the collective 
distribution of large polities over repeated simulations, expressed as the imperial 
density, closely matches the historical evolution of large-scale polities. It is 
therefore important to understand the statistical nature of the model when seeking 
to validate or make predictions from simulations. Nonetheless, we do discuss in 
the paper’s final section that the distribution of polity sizes potentially represents 
the vulnerability of a larger polity to fractionalize and therefore that a probabilistic 
measure of polity fractionalization is needed. 
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Figure 2. Polity frequency distribution (left), polity size distribution (right); for 
different time periods of the area in the Roman Empire 
 
 Next, we attempted to further validate the model by comparing the simulated 
imperial density to historical population records from Reba et al. (2016). The 
dataset contained population records or estimates for cities spanning from 2500 
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BCE to 1975 CE in intervals of uneven size (for example, 2500–1000 BCE, 0–500 
CE and 1400–1500 CE). Where the population data is missing for certain time 
periods, we have used linear regression to fill in the gaps. Each record in the 
dataset also contained the location of the city as a longitude and latitude. Using 
these coordinates, each city was projected onto the world map. If two or more cities 
were found to be within the same cell on the map, their populations were summed. 
This resulted in a sparse population map with a large number of cells having no 
population at all. In order to better match population data to the simulated 
imperial density, a Gaussian blur on the population per cell was applied (with a 
standard deviation of three cells). We also decided to compare the population data 
against cumulative imperial density. This reflects that areas of high population do 
not simply occur immediately when a large state forms but rather grow more 
quickly in stable regions than those in constant flux. 
 The blurred population density maps and correlation plots of population with 
cumulative imperial density are shown in Figure 3, for the periods 0–500 CE, 
1000–1100 CE and 1400–1500 CE (time ranges as permitted by the population 
data). For each correlation plot, the value is given on the top edge. There is a strong 
correlation between cumulative imperial density and population. For all time 
periods considered, 𝑅2 values were greater than 0.5 and increased over time to a 
maximum of 0.75 in the period 1400–1500 CE. This may reflect an increasing 
quality of population data in more recent times. The data points with zero imperial 
density but non-zero populations in Figure 3 mostly correspond to cells defined as 
deserts in the model. These cells are currently forbidden from belonging to a polity. 
 Finally, we considered whether the model could be used to identify regions of 
conflict. Our first point of investigation was to count how many times each cell is 
attacked over a simulation. The attack events were compared to a dataset of his-
torical battles created from a concatenation of two data sources, both derived from 
Wikipedia. As with the population data, the battles were projected onto the Old 
World map and blurred. The correlation of attack events with historical battles is 
in general poor. This is mainly due to a strong relationship between imperial 
density and the frequency of attacks. Areas which tend to feature large polities see 
fewer attacks as cells are forbidden from attacking each other if they belong to the 
same polity. Conversely, areas where large polities are rare see a large number of 
attack events. In particular, sub-Saharan Africa displayed a very large number of 
attack events in contrast to a small number of documented historical battles. As 
with population data, it must be noted that the battle dataset might be limited and 
have better coverage for Western historical battles. 
 A significantly better correlation was achieved, in this case, by restricting the 
cells being compared to those located in Europe, the Middle East and North Africa, 
which is the predominant theatre for the Western Classical world and medieval 
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Figure 3. Historical population data, with Gaussian blur (left), their correlation 
with cumulative imperial density with a linear fit (right); for different epochs 
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Figure 4. Historical battles data, with Gaussian blur (left), simulated attack 
frequency (center), their correlation with a linear fit, on a log-log scale (right); for 
different epochs 
 
Europe and the Levant. On the world stage, this kernel largely eliminates regions 
with low imperial density and high numbers of attacks, and likely focuses on an 
area for which battle data is better overall. The left column of Figure 4 shows the 
blurred historical battle frequency, the center column displays the frequency of 
simulated attack events and the right column shows the correlation between these 
two on a log-log scale. While better than the correlation for the entire Old World, 
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the quality of these fits is below those for population data, with 𝑅2 values typically 
ranging between 0.1 and 0.4. Similarly to the correlations in Figure 3, we observe 
that 𝑅2 tends to increase over time, likely reflecting an increase in the quality and 
number of data points available. Since battles occur at the edges of polities, we 
speculate that over a number of simulations the frequency of attacks may convey 
an intuition of the likely boundaries of empires where land is contested and conflict 
is more likely. It appears that, as we discovered earlier, the high variance in polity 
size and shape between simulations may limit how accurate this result can be. 
 

 
Figure 5. Mean imperial density over 20 simulations using the greedy attack model 
for three epochs. From left to right, 1500–500 BCE, 500 BCE–500 CE and 500–1500 
CE. 

Greedy Model 

The model was extended with the introduction of a “greedy” method for the 
selection of an attack target. Using this method, polities are more likely to attack 
their weaker neighbors. Polities therefore choose their targets more intelligently; 
they are less likely to engage in battles where victory is unlikely and are more likely 
to exploit weak neighbors. The greedy model proceeds as follows. First, all neigh-
bors of the attacking polity are enumerated, both land and sea neighbors. Next, the 
advantage of each neighbor is calculated. The advantage is the reciprocal of a 
polity’s attack power. Finally, the attack target is selected, where the probability of 
a polity being picked is equal to that polity’s advantage divided by the sum of the 
advantages of all of the neighbors. 
 Figure 5 shows the imperial density at epochs 1500–500 BCE, 500 BCE–500 CE 
and 500–1500 CE using the greedy attack model. This attack model has a dramatic 
impact on the imperial density, with large polities quickly spreading to all available 
cells at each epoch, even in areas that are expected to remain with relatively little 
development such as sub-Saharan Africa. 𝑅2 values for the plots shown in Figure 5 
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are given in Table 1, and confirm that this attack model less accurately models the 
historical prevalence and spread of large-scale polities.  
 The greedy attack model makes polities very effective at attacking and 
absorbing weak neighbors, so much so that the starting location of military tech-
nologies in the steppes no longer has a strong influence on the location of early 
large-scale polities or the path of the spread of such polities. To confirm this, the 
simulations using the greedy attack model were repeated with the starting lo-
cations of military technologies randomized. In these simulations, each cell has a 
4.34% chance of beginning with all military technologies. This percentage is equal 
to the proportion of polity-supporting cells which are classed as steppe in the 
original simulation. With the starting locations of military technologies random-
ized, the simulations produce very similar results, confirming that the influence of 
these starting locations on imperial density has been diminished. 
 When polities choose to attack randomly, military technologies are the most 
important factor when building large-scale polities as they increase the chance of 
ethnocide and hence the spreading of ultrasocial traits, which stabilize large 
polities. However, when polities attack weak neighbors preferentially, the attack 
success rises significantly, making large-scale polities more likely and less 
dependent on military technologies. This motivates the significant imperial density 
in areas far from the steppes (e.g., sub-Saharan Africa) and also accounts for the 
greater imperial density on coastal cells when using the greedy model, as these 
cells have many more neighbors to exploit or be exploited by via sea attacks. 
Indeed, if sea attacks are disabled, this larger imperial density relative to 
landlocked cells disappears. 

Discussion and Future Work 

In this report, we reproduce the results from Turchin et al. (2013), and release code 
and data for future use. Furthermore, we assess whether the model is predictive 
with respect to 1) population density as mapped by a city population dataset, 
finding a positive correlation; 2) areas of conflict as mapped by a dataset on 
historical battles, finding a mild correlation; 3) the shape of historical polities, 
finding no correlation. We further implemented a greedy version of the model, and 
verified the importance of random polity attacks, coupled with military technology 
diffusion from the steppes. To conclude, we discuss two aspects of future work: (1) 
proposed improvements and extensions to Turchin et al.’s (2013) original model; 
and (2) a network science extension to the analysis of the results, to expand our 
understanding of complex societal dynamics.  
 Regarding the first point, we suggest two ways to improve the model, without 
changing its fundamental hypothesis. Currently, the conflict process forces each 
cell to attack each of its neighbors with equal probability. The model results are 
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strongly dependent on this simplification, as we have shown. However, this is 
unrealistic when terrain, historical memory, and military factors are taken into 
account. Biasing the probability in accordance with a spatial interaction model 
(e.g., entropy maximization Boltzmann Lotka Volterra model in Wilson [2007]) 
could correct the spread of polities’ shape towards more historically accurate 
directions. Furthermore, improvements to the underlying agricultural and terrain 
data resolution and accuracy from the Seshat database (Turchin et al. 2015) could 
also improve prediction accuracy. 
 Regarding the second point, creating a more formal understanding of the 
dynamic process via a spatial interaction network could yield further insights into 
the underlying spatial structural evolution of polities and resulting conflict. 
Connecting data-driven models with explicit generative models is important to en-
hance our understanding and predictions of the posterior distribution of history-
dependent processes and applications, e.g., peacekeeping (Guo et al. 2018). In our 
future work, we propose to create an evolving spatial interaction network model 
based on population data from Reba et al. (2016). By inferring the likelihood of 
interactions between populated settlements, we can create a weighted network. 
The community properties of the network across hierarchical spatial scales (e.g., 
strength of affiliation to a community [Karrer et al. 2011]) are likely to correspond 
to imperial density in Turchin et al. (2013). As such, we would expect the following: 
(a) robust network communities (e.g., cores, as in Seifi et al. 2013) to correspond 
to stable polities, and (b) unstable boundaries between communities to corre-
spond to higher frequency of conflict (e.g., high betweenness, as in Guo et al. 2016). 
Probabilistically, the stochastic nature of imperial density and polity size (over 
Monte-Carlo simulation runs) in Turchin et al. (2013) maps well to the proba-
bilistic community strength and sizes in most community detection algorithms.  
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Code and Data Availability 

The simulation code and data used to generate the results in this work are available 
on GitHub at https://github.com/alan-turing-institute/guard/releases/tag/v0.15. 
The notebooks directory of this repository contains Jupyter Notebooks, which may 
be used to reproduce the figures presented here. 
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