6,246 research outputs found

    Cluster decomposition, T-duality, and gerby CFT's

    Get PDF
    In this paper we study CFT's associated to gerbes. These theories suffer from a lack of cluster decomposition, but this problem can be resolved: the CFT's are the same as CFT's for disconnected targets. Such theories also lack cluster decomposition, but in that form, the lack is manifestly not very problematic. In particular, we shall see that this matching of CFT's, this duality between noneffective gaugings and sigma models on disconnected targets, is a worldsheet duality related to T-duality. We perform a wide variety of tests of this claim, ranging from checking partition functions at arbitrary genus to D-branes to mirror symmetry. We also discuss a number of applications of these results, including predictions for quantum cohomology and Gromov-Witten theory and additional physical understanding of the geometric Langlands program.Comment: 61 pages, LaTeX; v2,3: typos fixed; v4: writing improved in several sections; v5: typos fixe

    Measurement of miniband parameters of a doped superlattice by photoluminescence in high magnetic fields

    Full text link
    We have studied a 50/50\AA superlattice of GaAs/Al0.21_{0.21}Ga0.79_{0.79}As composition, modulation-doped with Si, to produce n=1.4×1012n=1.4\times 10^{12} cm−2^{-2} electrons per superlattice period. The modulation-doping was tailored to avoid the formation of Tamm states, and photoluminescence due to interband transitions from extended superlattice states was detected. By studying the effects of a quantizing magnetic field on the superlattice photoluminescence, the miniband energy width, the reduced effective mass of the electron-hole pair, and the band gap renormalization could be deduced.Comment: minor typing errors (minus sign in eq. (5)

    Gravitational waves in hybrid quintessential inflationary models

    Get PDF
    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Omega(GW) at high frequencies. For appropriate values of the parameters of the model, Omega(GW) can be as high as 10(-12) in the MHz-GHz range of frequencies.Fundacao para a Ciencia e a Tecnologia, Portuga

    Conformity and controversies in the diagnosis, staging and follow-up evaluation of canine nodal lymphoma: a systematic review of the last 15 years of published literature

    Get PDF
    Diagnostic methods used in the initial and post-treatment evaluation of canine lymphoma are heterogeneous and can vary within countries and institutions. Accurate reporting of clinical stage and response assessment is crucial in determining the treatment efficacy and predicting prognosis. This study comprises a systematic review of all available canine multicentric lymphoma studies published over 15 years. Data concerning diagnosis, clinical stage evaluation and response assessment procedures were extracted and compared. Sixty-three studies met the eligibility criteria. Fifty-five (87.3%) studies were non-randomized prospective or retrospective studies. The survey results also expose variations in diagnostic criteria and treatment response assessment in canine multicentric lymphoma. Variations in staging procedures performed and recorded led to an unquantifiable heterogeneity among patients in and between studies, making it difficult to compare treatment efficacies. Awareness of this inconsistency of procedure and reporting may help in the design of future clinical trials

    Development of biocolonization resistant mortars: preliminary results

    Get PDF
    Restoration of Buildings and Monuments, vol. 13, nº 6 (2007), p.389-400The negative impact of biocolonization on buildings, particularly rendered ones, prompted the evaluation of a hydraulic mortar formulation to which copper metal, either as a powder or as fibres, was added as a means to control this problem. The study used in situ exposure in a location prone to biocolonization for over nine years. The results have proved that over this time period, no biocolonization occurred on samples containing 0.35 % by weight of copper powder with regards to the dry mortar mix. The mortar proved to acquire a slightly bluer-green hue which diminished after the nine year outdoor exposure. The mortars formulated with copper have a lower porosity as well as a lower capillary water absorption coefficient a definite advantage for their eventual life span. On the other hand, the mechanical resistance is slightly decreased but not significantly so. Further studies are envisioned to assess the performance with other types of binder, such as aerial lime

    Technological progresses in monoclonal antibody production systems

    Get PDF
    Monoclonal antibodies (mAbs) have become vitally important to modern medicine and are currently one of the major biopharmaceutical products in development. However, the high clinical dose requirements of mAbs demand a greater biomanufacturing capacity, leading to the development of new technologies for their large-scale production, with mammalian cell culture dominating the scenario. Although some companies have tried to meet these demands by creating bioreactors of increased capacity, the optimization of cell culture productivity in normal bioreactors appears as a better strategy. This review describes the main technological progresses made with this intent, presenting the advantages and limitations of each production system, as well as suggestions for improvements. New and upgraded bioreactors have emerged both for adherent and suspension cell culture, with disposable reactors attracting increased interest in the last years. Furthermore, the strategies and technologies used to control culture parameters are in constant evolution, aiming at the on-line multiparameter monitoring and considering now parameters not seen as relevant for process optimization in the past. All progresses being made have as primary goal the development of highly productive and economic mAb manufacturing processes that will allow the rapid introduction of the product in the biopharmaceutical market at more accessible prices. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 201

    Guidelines to cell engineering for monoclonal antibody production

    Get PDF
    Monoclonal antibodies (mAbs) are currently used for many diagnostic and therapeutic applications. The high demand for these biopharmaceuticals has led to the development of large-scale manufacturing processes, with productivity improvements being mainly achieved by optimization of bioreactor systems. However, more recently, the early steps of production, previous to bioreactor culture, have been presented as alternative areas where productivity enhancements can be achieved. Thus, this review describes the progress made for the improvement of productivity in mammalian expression systems for the high production of mAbs. Advances in the development of mAb-producing cell lines are being made, particularly regarding expression vector design and methods used for transfection, with the intent to create a reproducible methodology. Selection of the most suitable clones is also a critical step that can be improved, by including variables other than the expression level, which is still the common practice. Furthermore, strategies of cell engineering, although still mostly based on trial-and-error experimentation and not in standard protocols, hold great interest to improve cell growth and productivity, as well as product quality in the future. Improvements of the initial steps of the production process would not only result in cells with higher expression ability, but would also speed-up the process development
    • …
    corecore