506 research outputs found

    Optical second harmonic generation from Wannier excitons

    Full text link
    Excitonic effects in the linear optical response of semiconductors are well-known and the subject of countless experimental and theoretical studies. For the technologically important second order nonlinear response, however, description of excitonic effects has proved to be difficult. In this work, a simplified three-band Wannier exciton model of cubic semiconductors is applied and a closed form expression for the complex second harmonic response function including broadening is derived. Our calculated spectra are found to be in excellent agreement with the measured response near the band edge. In addition, a very substantial enhancement of the nonlinear response is predicted for the transparency region

    Coulomb correlation effects in zinc monochalcogenides

    Full text link
    Electronic structure and band characteristics for zinc monochalcogenides with zinc-blende- and wurtzite-type structures are studied by first-principles density-functional-theory calculations with different approximations. It is shown that the local-density approximation underestimates the band gap and energy splitting between the states at the top of the valence band, misplaces the energy levels of the Zn-3d states, and overestimates the crystal-field-splitting energy. Regardless of the structure type considered, the spin-orbit-coupling energy is found to be overestimated for ZnO and underestimated for ZnS with wurtzite-type structure, and more or less correct for ZnSe and ZnTe with zinc-blende-type structure. The order of the states at the top of the valence band is found to be anomalous for ZnO in both zinc-blende- and wurtzite-type structure, but is normal for the other zinc monochalcogenides considered. It is shown that the Zn-3d electrons and their interference with the O-2p electrons are responsible for the anomalous order. The typical errors in the calculated band gaps and related parameters for ZnO originate from strong Coulomb correlations, which are found to be highly significant for this compound. The LDA+U approach is by and large found to correct the strong correlation of the Zn-3d electrons, and thus to improve the agreement with the experimentally established location of the Zn-3d levels compared with that derived from pure LDA calculations

    Transferable Pair Potentials for CdS and ZnS Crystals

    Full text link
    A set of interatomic pair potentials is developed for CdS and ZnS crystals. We show that a simple energy function, which has been used to describe the properties of CdSe [J. Chem. Phys. 116, 258 (2002)], can be parametrized to accurately describe the lattice and elastic constants, and phonon dispersion relations of bulk CdS and ZnS in the wurtzite and rocksalt crystal structures. The predicted coexistence pressure of the wurtzite and rocksalt structures, as well as the equation of state are in good agreement with experimental observations. These new pair potentials enable the study of a wide range of processes in bulk and nanocrystalline II-VI semiconductor materials

    Tuning surface metallicity and ferromagnetism by hydrogen adsorption at the polar ZnO(0001) surface

    Full text link
    The adsorption of hydrogen on the polar Zn-ended ZnO(0001) surface has been investigated by density functional {\it ab-initio} calculations. An on top H(1x1) ordered overlayer with genuine H-Zn chemical bonds is shown to be energetically favorable. The H covered surface is metallic and spin-polarized, with a noticeable magnetic moment at the surface region. Lower hydrogen coverages lead to strengthening of the H-Zn bonds, corrugation of the surface layer and to an insulating surface. Our results explain experimental observations of hydrogen adsorption on this surface, and not only predict a metal-insulator transition, but primarily provide a method to reversible switch surface magnetism by varying the hydrogen density on the surface.Comment: 4 pages, 3 figure

    First principles calculations of the electronic and geometric structure of Ag27Cu7Ag_{27}Cu_{7} nanoalloy

    Full text link
    \emph{Ab initio} calculations of the structure and electronic density of states (DOS) of the perfect core-shell Ag27Cu7Ag_{27}Cu_{7} nanoalloy attest to its D5hD_{5h} symmetry and confirm that it has only 6 non-equivalent (2 CuCu and 4 AgAg) atoms. Analysis of bond-length, average formation energy, heat of formation of Ag27Cu7Ag_{27}Cu_{7} and L12L1_2 AgCuAg-Cu alloys provide an explanation for the relative stability of the former with respect to the other nanoalloys in the same family. The HOMO-LUMO gap is found to be 0.77 eV, in agreement with previous results. Analysis of the DOS of Ag27Cu7Ag_{27}Cu_{7}, L12L1_2 AgCuAg-Cu alloys and related systems provides insight into the effects of low coordination, contraction/expansion and the presence of foreign atoms on the DOS of CuCu and AgAg. While some characteristics of the DOS are reminiscent of those of the phonon-stable L12L1_2 AgCuAg-Cu alloys, the CuCu and AgAg states hybridize significantly in Ag27Cu7Ag_{27}Cu_{7}, compensating the dd-band narrowing that each atom undergoes and hindering the dip in the DOS found in the bulk alloys. Charge density plots of Ag27Cu7Ag_{27}Cu_{7} provide further insights into the relative strengths of the various interatomic bonds. Our results for the electronic and geometric structure of this nanoalloy can be explained in terms of length and strength hierarchies of the bonds, which may have implications also for the stability of alloy in any phase or size.Comment: 16 figure

    Contrast Mechanisms for the Detection of Ferroelectric Domains with Scanning Force Microscopy

    Full text link
    We present a full analysis of the contrast mechanisms for the detection of ferroelectric domains on all faces of bulk single crystals using scanning force microscopy exemplified on hexagonally poled lithium niobate. The domain contrast can be attributed to three different mechanisms: i) the thickness change of the sample due to an out-of-plane piezoelectric response (standard piezoresponse force microscopy), ii) the lateral displacement of the sample surface due to an in-plane piezoresponse, and iii) the electrostatic tip-sample interaction at the domain boundaries caused by surface charges on the crystallographic y- and z-faces. A careful analysis of the movement of the cantilever with respect to its orientation relative to the crystallographic axes of the sample allows a clear attribution of the observed domain contrast to the driving forces respectively.Comment: 8 pages, 8 figure

    Why is the electrocaloric effect so small in ferroelectrics?

    Get PDF
    Ferroelectrics are attractive candidate materials for environmentally friendly solid state refrigeration free of greenhouse gases. Their thermal response upon variations of external electric fields is largest in the vicinity of their phase transitions, which may occur near room temperature. The magnitude of the effect, however, is too small for useful cooling applications even when they are driven close to dielectric breakdown. Insight from microscopic theory is therefore needed to characterize materials and provide guiding principles to search for new ones with enhanced electrocaloric performance. Here, we derive from well-known microscopic models of ferroelectricity meaningful figures of merit for a wide class of ferroelectric materials. Such figures of merit provide insight into the relation between the strength of the effect and the characteristic interactions of ferroelectrics such as dipolar forces. We find that the long range nature of these interactions results in a small effect. A strategy is proposed to make it larger by shortening the correlation lengths of fluctuations of polarization. In addition, we bring into question other widely used but empirical figures of merit and facilitate understanding of the recently observed secondary broad peak in the electrocalorics of relaxor ferroelectrics.U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA

    Acousto-optical multiple interference switches

    Get PDF
    The authors introduce an alternative approach for acousto-optical light control based on the interference of light propagating through several waveguides, each subjected to a periodic refractive index modulation induced by a surface acoustic wave. The feasibility of the concept is demonstrated by the realization of an optical switch for arbitrary time intervals with an on/off contrast ratio of 20

    Excitonic effects in the optical properties of SiC sheet and nanotubes

    Get PDF
    The quasiparticle band structure and optical properties of single-walled zigzag and armchair SiC nanotubes (SiC-NTs) as well as single SiC sheet are investigated by ab initio many-body calculations using the GW and the GW plus Bethe-Salpeter equation (GW+BSE) approaches, respectively. Significant GW quasiparticle corrections of more than 1.0 eV to the Kohn-Sham band gaps from the local density approximation (LDA) calculations are found. The GW self-energy corrections transform the SiC sheet from a indirect LDA band gap to a direct band gap material. Furthermore, the quasiparticle band gaps of SiC-NTs with different chiralities behave very differently as a function of tube diameter, and this can be attributed to the difference in the curvature-induced orbital rehybridization between the different chiral nanotubes. The calculated optical absorption spectra are dominated by discrete exciton peaks due to exciton states with large binding energy up to 2.0 eV in the SiC sheet and SiC-NTs. The formation of strongly bound excitons is attributed to the enhanced electron-hole interaction in these low dimensional systems. Remarkably, the excited electron amplitude of the exciton wavefunction is found to peak on the Si atoms near the hole position (which is on the C site) in the zigzag SiC-NTs, indicating a charge transfer from an anion (hole) to its neighboring cations by photoexcitation. In contrast, this pronounced peak structure disappear in the exciton wavefunction in the armchair SiC-NTs. Furthermore, in the armchair SiC-NTs, the bound exciton wavefunctions are more localized and also strongly cylindrically asymmetric
    corecore