416 research outputs found

    Kelvin-Helmholtz Instability in a Weakly Ionized Medium

    Get PDF
    Ambient interstellar material may become entrained in outflows from massive stars as a result of shear flow instabilities. We study the linear theory of the Kelvin - Helmholtz instability, the simplest example of shear flow instability, in a partially ionized medium. We model the interaction as a two fluid system (charged and neutral) in a planar geometry. Our principal result is that for much of the relevant parameter space, neutrals and ions are sufficiently decoupled that the neutrals are unstable while the ions are held in place by the magnetic field. Thus, we predict that there should be a detectably narrower line profile in ionized species tracing the outflow compared with neutral species since ionized species are not participating in the turbulent interface with the ambient ISM. Since the magnetic field is frozen to the plasma, it is not tangled by the turbulence in the boundary layer.Comment: 21 pages, 4 figure

    Cloud Dispersal in Turbulent Flows

    Get PDF
    Cold clouds embedded in warm media are very common objects in astrophysics. Their disruption timescale depends strongly on the dynamical configuration. We discuss the evolution of an initially homogeneous cold cloud embedded in warm turbulent gas. Within a couple of dynamical timescales, the filling factor of the cold gas within the original cloud radius drops below 50%. Turbulent diffusivities estimated from the time evolution of radial filling factor profiles are not constant with time. Cold and warm gas are bodily transported by turbulence and mixed. This is only mildly indicated by column density maps. The radiation field within the cloud, however, increases by several orders of magnitudes due to the mixing, with possible consequences for cloud chemistry and evolution within a few dynamical timescales.Comment: 11 pages, 12 figures, accepted by MNRA

    Magnetized Non-linear Thin Shell Instability: Numerical Studies in 2D

    Get PDF
    We revisit the analysis of the Non-linear Thin Shell Instability (NTSI) numerically, including magnetic fields. The magnetic tension force is expected to work against the main driver of the NTSI -- namely transverse momentum transport. However, depending on the field strength and orientation, the instability may grow. For fields aligned with the inflow, we find that the NTSI is suppressed only when the Alfv\'en speed surpasses the (supersonic) velocities generated along the collision interface. Even for fields perpendicular to the inflow, which are the most effective at preventing the NTSI from developing, internal structures form within the expanding slab interface, probably leading to fragmentation in the presence of self-gravity or thermal instabilities. High Reynolds numbers result in local turbulence within the perturbed slab, which in turn triggers reconnection and dissipation of the excess magnetic flux. We find that when the magnetic field is initially aligned with the flow, there exists a (weak) correlation between field strength and gas density. However, for transverse fields, this correlation essentially vanishes. In light of these results, our general conclusion is that instabilities are unlikely to be erased unless the magnetic energy in clouds is much larger than the turbulent energy. Finally, while our study is motivated by the scenario of molecular cloud formation in colliding flows, our results span a larger range of applicability, from supernovae shells to colliding stellar winds.Comment: 12 pages, 17 figures, some of them at low resolution. Submitted to ApJ, comments welcom

    From the warm magnetized atomic medium to molecular clouds

    Full text link
    {It has recently been proposed that giant molecular complexes form at the sites where streams of diffuse warm atomic gas collide at transonic velocities.} {We study the global statistics of molecular clouds formed by large scale colliding flows of warm neutral atomic interstellar gas under ideal MHD conditions. The flows deliver material as well as kinetic energy and trigger thermal instability leading eventually to gravitational collapse.} {We perform adaptive mesh refinement MHD simulations which, for the first time in this context, treat self-consistently cooling and self-gravity.} {The clouds formed in the simulations develop a highly inhomogeneous density and temperature structure, with cold dense filaments and clumps condensing from converging flows of warm atomic gas. In the clouds, the column density probability density distribution (PDF) peaks at \sim 2 \times 10^{21} \psc and decays rapidly at higher values; the magnetic intensity correlates weakly with density from n0.1n \sim 0.1 to 10^4 \pcc, and then varies roughly as n1/2n^{1/2} for higher densities.} {The global statistical properties of such molecular clouds are reasonably consistent with observational determinations. Our numerical simulations suggest that molecular clouds formed by the moderately supersonic collision of warm atomic gas streams.}Comment: submitted to A&
    corecore