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ABSTRACT

Ambient interstellar material may become entrained in outflows from massive stars as a result of shear flow
instabilities. We study the linear theory of the Kelvin-Helmholtz instability, the simplest example of shear flow
instability, in a partially ionized medium. We model the interaction as a two-fluid system (charged and neutral) in a
planar geometry. Our principal result is that for much of the relevant parameter space, neutrals and ions are
sufficiently decoupled that the neutrals are unstable while the ions are held in place by the magnetic field. Thus, we
predict that there should be a detectably narrower line profile in ionized species tracing the outflow compared with
neutral species, since ionized species are not participating in the turbulent interface with the ambient ISM. Since
the magnetic field is frozen to the plasma, it is not tangled by the turbulence in the boundary layer.

Subject headings: instabilities — ISM: general — ISM: jets and outflows — stars: mass loss

1. INTRODUCTION

In the process of forming, massive (>10 M�) stars produce
massive bipolar outflows. In contrast to outflows from low-
mass protostars, outflows from massive stars frequently have
more mass than their presumed driving protostar (Churchwell
1997). The canonical explanation for the origin of the mass is
that a less massive jet originating from either the accretion disk
or protostar sweeps up and entrains ambient interstellar ma-
terial. This model can potentially explain both the large masses
and poor collimation of massive outflows. It may also explain
how low-mass outflows become less collimated as they age
(Bachiller & Tafalla 1999). Churchwell (1997) argued that
mechanical entrainment, through, e.g., bow shocks, could not
simultaneously explain both the large mass and young age of
massive outflows.

Shear flow, or Kelvin-Helmholtz, instabilities at the inter-
face between the jet and the ambient material is an alternative
possible mechanism for entrainment. The instability amplifies
ripples at the interface, culminating in the development of a
turbulent boundary layer, which can transfer momentum from
the jet to the ambient medium. A magnetic field parallel to the
flow tends to suppress the instability, because magnetic tension
opposes rippling. The result is that instability is only present
if the velocity shear is greater than the Alfvén velocity
(Chandrasekhar 1961).

The nonlinear development of the Kelvin-Helmholtz insta-
bility is strongly influenced by the magnetic field (Malagoli
et al. 1996; Jones et al. 1997). The numerical simulations
performed by these authors show that the vortices created by
the instability wind-up the field until it reaches the Ohmic scale.
This wind-up transfers energy to small scales, while Ohmic
dissipation heats the layer. These effects are absent in the field-
free case.

In this work, we investigate the Kelvin-Helmholtz instability
in the linear, partially ionized regime to determine its possible
contribution to entrainment in massive bipolar outflows. This

problem cannot be analyzed in the hydrodynamic regime, be-
cause the neutral Alfvén velocity [vA ¼ B=(4��n)

0:5] is some-
times larger than the flow speed, indicating that the magnetic
field can be strong enough to affect the dynamics. On the other
hand, the pure magnetohydrodynamic (MHD) regime is in-
appropriate, because at sufficiently short wavelengths, Alfvén
waves propagate nearly independently of the neutrals. The flow
speed is universally observed to be significantly larger than the
sound speed (cs P 0:1 km s�1).
In x 2 we describe a model that we believe is appropriate for

massive outflows driven by massive protostars. In x 3 we
discuss the numerically derived solutions to the dimensionless
dispersion equation and equivalent analytical solutions to sim-
plified versions of the dispersion equation. We demonstrate
that there is a new instability unique to the partially ionized
regime that results from ion-neutral slip. In x 4, we discuss the
observational implications of our results, concentrating on the
physical environment of the interaction zone between a bipolar
outflow and the ambient interstellar material (ISM). Section 5
is a critical summary of the paper.

2. MODEL DESCRIPTION

We model the interaction zone between a high-speed jet and
the ambient ISM by a slab geometry with a flow along the
x-axis. The interface between the two fluids is the x-y plane.
The density is everywhere uniform, and the velocity is uniform
except at z ¼ 0, where it has a step. We assume the flow ve-
locity U decreases with increasing z. The magnetic field is
uniform and aligned with the flow, which maximizes its sta-
bilizing effect in the x-direction.
In this model, the equilibrium flow has zero vorticity except

on the plane z ¼ 0, where the vorticity is infinite. For our
choice of coordinates and velocity profile, the total vorticity
integrated across the sheet is �2Uŷ.
The mechanism of the Kelvin-Helmholtz instability is

explained in Batchelor (1967). Suppose the interface is per-
turbed by a small amplitude ripple, as shown, in the center-
of-mass frame in Figure 1. Denote the vertical displacement
of the vortex sheet by �. In general, the vorticity perturbation
is out of phase with �. If it can be arranged that the vorticity
has the distribution shown by the dashed line, then the equi-
librium flow sweeps negative vorticity toward point P on both
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sides of the interface. The effect is as if an extra eddy, rotat-
ing counterclockwise as sketched in the figure, were added to
the flow. The centrifugal force associated with the eddy pushes
the interface between P and Q outward, resulting in the growth
of � with time. If the vorticity perturbation were shifted in
phase by � with respect to the dashed line, � would shrink. As
explained here, the instability mechanism requires advection
of vorticity by the bulk flow in opposite directions above and
below the interface. It is always possible to choose a reference
frame in which this is the case, provided that the velocity
profile has a jump.

A magnetic field parallel to the flow exerts a tension force
when bent. The tension force is stabilizing, and the criterion for
it to dominate hydrodynamic forces is roughly that the mag-
netic energy exceeds the kinetic energy of relative motion or,
equivalently, that the Alfvén speed for the bulk medium exceed
the flow speed.

The basic mechanism of instability is unaffected by partial
ionization. In the weakly ionized medium of interest here, the
plasma component tends to be stable, because its low density
implies low kinetic energy. The neutral component, on the
other hand, is intrinsically unstable, because it is not directly
acted on by magnetic forces. Friction between the ions and
neutrals allows magnetic forces to act on the latter. As shown
below, however, no matter how large the magnetic field is, it
cannot stabilize the neutrals completely.

In the present discussion we follow the analysis of
Chandrasekhar (1961) but consider two fluids, charged and
neutral, coupled by elastic collisions.4 We assume the medium

is incompressible (: = vvvvvvvvi;n ¼ 0). Our problem is described by
the neutral and ion momentum equations and the magnetic
induction equation

�n@tvvvvvvvvn þ �nvvvvvvvvn = :vvvvvvvvn ¼�:Pn � �n�ni(vvvvvvvvn � vvvvvvvvi) ð1Þ
�i@tvvvvvvvvi þ �ivvvvvvvvi = :vvvvvvvvi ¼�:Pi � �n�ni(vvvvvvvvi � vvvvvvvvn)

þ 1

4�
(: < B) < B ð2Þ

@tB ¼ : < vvvvvvvvi < Bð Þ; ð3Þ

where

�ni � ��i ð4Þ

is the neutral-ion collision frequency, and

� � �vh i
mi þ mn

ð5Þ

is the collision rate coefficient per unit mass.
The system consisting of two constant-density, constant-

pressure regions of uniform flow aligned with a uniform mag-
netic field is clearly a steady state solution of equations (1)–(3).
We now consider small perturbations of the flow. We assume
these perturbations are independent of y. According to Squires’
theorem (Drazin & Reid 1981) and its extension to MHD
(Hughes & Tobias 2001), in the absence of viscosity and re-
sistivity these are the fastest growing perturbations. Since the
magnetic field enters the problem only through the tension
force, which is independent of the structure in y , ion-neutral
friction should not affect this result. We expand the momentum

Fig. 1.—Diagram of the standard Kelvin-Helmholtz instability. Since the fluid is assumed to be incompressible, a small periodic perturbation at a shear layer will
tend to grow. In general, the vorticity perturbation (��y) is out of phase with the vertical displacement of the vortex sheet (�). If the vorticity has the distribution
shown by the dashed line, then the equilibrium flow sweeps negative vorticity toward point P. The effect is as if an ‘‘extra eddy,’’ rotating counterclockwise were
added to the flow. The centrifugal force associated with the eddy pushes the interface between P and Q outward, resulting in the growth of � with time.

4 We ignore coupling by ionization and recombination, since these pro-
cesses are slow in comparison to elastic processes.
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and induction equations to first order in a small parameter �,
writing

vx � u ¼U þ �u ð6Þ
vy � w ¼ �w ð7Þ

Bx ¼ Bþ �bx ð8Þ
Bz ¼ �bz: ð9Þ

We assume all perturbed quantities q take the form

q ¼ q0e
i !tþkxxð Þþ	z; ð10Þ

where q0 is a constant amplitude. Linearizing in � gives

�n(@t þ U@x)un ¼� @xPn þ �n�ni(ui � un) ð11Þ
�n(@t þ U@x)wn ¼� @xPn þ �n�ni(wi � wn) ð12Þ
�i(@t þ U@x)ui ¼� @xPi þ �n�ni(un � ui) ð13Þ
�i(@t þ U@x)wi ¼� @xPi þ �n�ni(wn � wi) ð14Þ

þ B

4�
(@xbz � @zbx)

(@t þ U@x)bx ¼ B@xui ð15Þ
(@t þ U@x)bz ¼ B@xwi; ð16Þ

which correspond to equations (180)–(183) in Chandrasekhar
(1961, pp. 508–9). Eliminating B in equation (14) using equa-
tions (15) and (16), constructing the ẑ component of the curl
of the momentum equations, and applying : = vvvvvvvvi;n � 0, we
obtain

�i(!þ Ukx)�
B2k2x

4� !þ Ukxð Þ

� �
@2
z � k2x

� �
wi ¼ i�n�ni @

2
z � k2x

� �

; (wi � wn)

ð17Þ
�n(!þ Ukx) @2

z � k2x
� �

wn ¼ i�n�ni @
2
z � k2x

� �
; (wn � wi):

ð18Þ

These relations hold in each region, but not at the interface,
where the velocity is not analytic. Thus, to derive the disper-
sion relation, we must integrate each equation over an infini-
tesimal region surrounding z ¼ 0 and use standard Gaussian
pillbox arguments. Denoting the jumps in quantities by
�f: : :g, we get

�f�i(!þ Ukx)@zwig ¼ i�f�n�ni@z(wi � wn)g

þ B2k2x
4�

�
@zwi

!þ Ukx

� �
ð19Þ

�f�n(!þ Ukx)@zwng ¼ i�f�n�ni@z(wn � wi)g: ð20Þ

We write the ion and neutral velocity amplitudes in the form

wi1 ¼ A (!þ U1k)e
kz for z < 0 ð21Þ

wi2 ¼ A (!þ U2k)e
�k z for z > 0 ð22Þ

wn1 ¼ B (!þ U1k)e
k z for z < 0 ð23Þ

wn2 ¼ B (!þ U2k)e
�k z for z > 0; ð24Þ

where the subscripts 1 and 2 refer to the jet and ambient media ,
respectively. The forms of wi;n are chosen so that the ion and
neutral displacements are continuous across the interface, as
must hold on physical grounds. Substituting these forms into
equations (19) and (20), we solve for B, the neutral velocity
fluctuations, in terms of A, the ion velocity fluctuations. The
result is

B ¼� i �n1�1(!þ U1kx)þ �n2�2(!þ U2kx)½ �
;
�
�n1(!þ U1kx)(!þ U1kx � i�1)

þ �n2(!þ U2kx)(!þ U2kx � i�2)
��1A : ð25Þ

We then use equations (21) and (25) in equation (19) to obtain
the dispersion relation

�i1 !þ U1kð Þ2þ�i2 !þ U2kð Þ2¼
�n1�1(!þ U1k)þ �n2�1(!þ U2k)½ �

;
n
i� ½�n1�1(!þ U1k þ �n2�1(!þ U2k)�

;
�
�n1(!þ U1k)(!þ U1k � i�1)

þ �n2(!þ U2k)(!þ U2k � i�2)
��1

o
þ B2k2

2�
; ð26Þ

where �ni has been abbreviated to � and kx abbreviated to k.
We now assume that the jet and ambient medium have the

same density, work in the center of momentum frame so that

U1 ¼ �U2 ¼ U

�n1 ¼ �n2 ¼ �n

�i1 ¼ �i2 ¼ �i; ð27Þ

and nondimensionalize the problem as

m � �n
�i

; x � !

�

h � Uk

�
; a �

ffiffiffiffi
m

p
Bk

�
ffiffiffiffiffiffiffiffiffiffi
4��n

p ¼ kvAi

�
; ð28Þ

where the ion Alfvén speed vAi is defined as B=(4��i)
0:5. The

variables x, h, and a represent the perturbation frequency, flow
speed, and ion Alfvén speed, respectively. Note that the ve-
locity difference between the two regions is 2U.
Substituting equations (27) and (28) into equation (26) we

obtain

x4 � i(mþ 1)x3 þ 2h2 � a2
� �

x2

� i mh2 � a2 þ h2
� �

xþ h2 h2 � a2
� �

¼ 0: ð29Þ

In all cases of interest, m3 1 and a3 h, which allows us to
drop a few of the terms in equation (29). This leads to the
somewhat more compact expression

x4 � imx3 � a2x2 � i(mh2 � a2)x� a2h2 ¼ 0: ð30Þ

Equation (30) is the basis of our subsequent stability analysis.
We will be looking for solutions for x that have a negative
imaginary component, an indication of a growing instability.

3. ANALYSIS OF THE DISPERSION RELATION

Equations (29) and (30) reduce, in special cases, to previ-
ously known results. These are discussed in x 3.1. In x 3.2 we
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present numerical and analytical solutions for the fastest
growing modes. In x 3.3 we discuss the physical nature of the
instabilities.

3.1. Recovery of Previously Known Results

If h � 0, equation (30) reverts to the dispersion relation for
Alfvén waves in a partially ionized medium (Kulsrud &
Pearce 1969):

x x2 � a2
� �

� i x2 � a2

m


 �
¼ 0: ð31Þ

At sufficiently small wavenumber (k < 2�ni=vAn; a < 2
ffiffiffiffi
m

p
),

the wave speed is close to the neutral Alfvén velocity vAn,
because the neutral-ion collision timescale is less than the
wave period and the ion and neutral species are closely cou-
pled. We can derive this result from equation (31) by treating
the second factor in parentheses as dominant. This leads to

x � � affiffiffiffi
m

p þ i
a2

2m
; ð32Þ

which is a weakly damped Alfvén wave propagating at speed
vAn.

At sufficiently large wavenumber (k > �in=2vAi; a > m=2),
the wave period is shorter than the ion-neutral collision time-
scale. Thus, Alfvénic disturbances are able to propagate
through the ions without disturbing the neutrals and propagate
at the ion Alfvén velocity vAi . We can derive this result from
equation (31) by treating the first factor in parentheses as
dominant. This leads to

x � �aþ i
m

2
; ð33Þ

which is a damped wave propagating at the ion Alfvén ve-
locity. In the intermediate wavenumber regime (2

ffiffiffiffi
m

p
< a <

m=2), waves cannot propagate, because the ions are poorly
coupled to neutrals and thus feel a strong drag.

The shear instability in a fully neutral medium (or ionized
but magnetic-field free) is present at any velocity and has a
growth rate kU (� h in our notation). In order to recover the
hydrodynamic instability, we must use equation (29) with
a � 0. The dispersion relation can then be written in the form

x2 þ h2
� �

x2 � i mþ 1ð Þxþ h2
� �

¼ 0: ð34Þ

The hydrodynamic instability is the root x ¼ �ih.
On the other hand, a fully ionized medium with a magnetic

field parallel to the shear flow is stabilized by magnetic tension
if U < vA. In order to recover the MHD instability, we set m �
0 in equation (29) and write the dispersion relation in the form

x2 þ h2 � a2
� �

x2 þ h2 � ix
� �

¼ 0: ð35Þ

Note that the growth rates of both hydrodynamic and MHD
instabilities increase linearly with wavenumber.

3.2. The Most Unstable Roots

With x 3.1 as background, we now turn to the shear insta-
bility in the partially ionized regime. If there were no ion-
neutral friction, the neutrals would always be unstable. The
plasma would be stable if U < vAi (h< a), which we assume
to be the case. Since the growth rate of the hydrodynamic
instability increases with k, there is a wavenumber above
which friction with the ions cannot stabilize the perturbation.

Therefore, we expect short-wavelength perturbations to grow
at the hydrodynamic rate in the neutral fluid but to leave the
plasma and magnetic field in place.

At longer wavelengths, there is time for ion-neutral friction
to act. If vA < U (a < h

ffiffiffiffi
m

p
), the magnetic field cannot be

expected to stabilize the medium, no matter how well the ions
and neutrals are coupled. On the other hand, if U < vA, we
might expect that at sufficiently long wavelengths, the coupling
is good enough to completely stabilize the system. We see
below, however, that this is never the case.

We carried out a parameter study of the roots of equation
(30) as functions of a and h using the Mathematica software
package (Wolfram 1999). Surprisingly, the roots are closely
approximated by the analytical expressions given in Table 1 for
the specified range of dimensionless parameters. In the results
presented here, we focus on two sets of physical environments
that we believe are illustrative of the range of conditions en-
countered in molecular outflows. The density of the ambient
medium near massive protostars is a strong function of distance
from the protostar. Within radii of 100–1000 AU, densities are
greater than 105 cm�3; further out, where outflows can be
easily resolved and structure studied, densities of 103 cm�3 are
typical. In both examples, we take the molecular hydrogen
density n(H2) to be 103 cm�3, the relative flow speed 2U to be
20 km s�1, and the ratio m of neutral to ionized mass density to
be 106 (corresponding to an ionization fraction �10�7, for an
ion to neutral particle mass ratio of �10). The collision fre-
quency � is 1:5 ; 10�13 s�1 (we use the rate coefficient of
Draine et al. 1983, h�vi ¼ 1:5 ; 10�9 cm2 s�1). With these
values, the wavelength at which the hydrodynamic frequency
kUmatches the collision frequency (h ¼ 1) is about 1.3 pc. The
only difference between the two cases is in the magnetic-field
strength, which we take to be 1 mG (strong-field case) and
1 
G (weak-field case). With these parameters, a=h ¼ 4400
and 4.4 in the strong- and weak-field cases, respectively.

Since only growing modes will be dynamically important in
the interface between a fast-moving jet and the ambient ISM,
we restrict our discussion to two solutions,�ih [and the variant
�i 0:5� hð Þ] and �ih2. Confirmation that these expressions
closely approximate the numerically derived roots is shown in
Figure 2. The numerically determined roots to the dispersion
equation are shown as a function of wavelength; overlaid are
the analytical approximations to the two growing modes. The
wavelengths 2�=k and growth times ½Im(!)��1

are plotted in
physical units for the two cases specified above.

The analytical solutions can be derived from the dispersion
relation by dropping small terms. The dominant terms used to
derive each solution are given in Table 1. For example, the first
root listed, �ih, is the standard hydrodynamic instability de-
rived from equation (34). From the dispersion relation, we
can see that the terms /a2 (�a2x2, ia2x, and �a2h2) are
dominant in the high magnetic field regime. Of the a2 terms,
the terms /h2, x2 dominate over the term /x, because h > 1.

TABLE 1

Unstable Roots of Characteristic Equation

Root Dominant Termsa Physical Regime

�ih ............................. 3rd, 6th h > 1

�ih2 ............................ 5th, 6th 1 > h and a=
ffiffiffiffi
m

p
> h

i(0.5� h) .................... 3rd, 4th, 5th, 6th a=
ffiffiffiffi
m

p
> h > 1

a Numbers refer to the terms (numbered left to right) of the characteristic
equation x4 � imx3 � a2x2 � imh2xþ ia2x� a2h2 ¼ 0.
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In contrast, when h < 1, the terms /x, h2 dominate, and the
growing mode is �ih2.

This second growing mode, �ih2, is a new mode that arises
only in a weakly ionized medium. It originates when h < 1 or,
equivalently, kU < �. The neutrals feel a constant drag force,
independent of position, caused by collisions with the sta-
tionary ions. The instability has an origin similar to the stan-
dard hydrodynamic instability explained in x 2. The principal
difference is that the neutral-ion collision time is shorter than
the wave period. Thus, neutral material collides with ions (held
stationary because of the magnetic-field tension) frequently
during each perturbation period, which slows the growth of
small perturbations. This slowing of the growth is clearly
visible in Figure 2 (bottom panel ) in which the growth time is
longer for long-wavelength (and long-period) perturbations.
The origin of this mode can be made more clear by assuming
the ions are held strictly in place by the magnetic field and
rederiving the roots (see Appendix). The break between the
two growing modes occurs when h ¼ 1 or, equivalently,
1=Uk (the wave period) ¼ 1=� (the neutral-ion collision time-
scale; see Fig. 3 for physical parameters of this transition).
Since this mode grows more slowly than the �ih mode, it is
important only in the situation in which U < vA (or

ffiffiffiffi
m

p
h < a) ,

when the MHD mode is stable.
When

ffiffiffiffi
m

p
h > a and h < 1, �ih(1� a2=mh2)0:5 is a better

approximation to the growth rate. This is the analog of equa-
tion (35) for a fully ionized medium. It is based on the limit of
infinitely strong ion-neutral coupling.

3.3. Physical Nature of the Unstable Modes

One of the main results of x 3.2 is that the plasma and the
neutrals can follow very different dynamics as the instability
grows. Although the interface between the two regions of flow
is the same for the plasma as for the neutrals in the equilibrium
system, the displaced interfaces for the plasma and neutral
species can differ, as can their velocities. The negligibly small
inertia of the ions renders any differences irrelevant to the
basic mechanism of instability, but they are important for the

nonlinear outcome of the instability and for its spectroscopic
signatures.
On physical grounds, we expect large differences between vi

and vn when ion-neutral species coupling is weak (h > 1) and
magnetic forces are strong. Whether these differences persist at
small h depends on the relative values of a=

ffiffiffiffi
m

p
and h. If their

ratio is less than unity, the field is too weak to suppress in-
stability even in the limit of infinitely strong ion-neutral cou-
pling, and we expect vi � vn. If a=h

ffiffiffiffi
m

p
> 1, the instability acts

on the neutrals but leaves the ions behind, and we expect large
differences between vi and vn even at short wavelengths.
These expectations are borne out by analysis. According to

equation (21), the amplitudes of the ion and neutral displace-
ments are A and B, respectively. Their ratio follows from
equation (25), which for the problem at hand can be written in
dimensionless form using equation (28) as

B
A ¼ �ix

x2 þ h2 � ix
: ð36Þ

The modulus of the relative amplitude is plotted as functions
of wavelength in Figure 4 for the vA >U and vA <U cases,
respectively. When the field is strong and h is large (short
wavelength), the ions are held firmly in place and the insta-
bility is almost entirely in the neutrals, so jB=A j is large. The
numerical results are well fitted by the asymptotic formula
jB=A j� a2=mh / k�1. As h decreases, the coupling improves,
but the magnetic restoring force is still very large and the
ion response never matches the neutrals. In this regime,
jB=A j � a2=mh2. Recall (see Fig. 2) that in this limit the in-
stability is of the weak form x � �ih2.
When the field is weak, magnetic forces are relatively un-

important. In this case, jB=A j is nearly unity over most of the
range considered, although Figure 4 (bottom panel ) shows a
slight upturn at the shortest wavelengths, at which ion-neutral
friction is relatively weak. The location of the upturn shows
the expected scaling with B. For example, at k ¼ 280 AU,
jB=A j � 1 for B ¼ 1 
G, increasing to 25 if B ¼ 10 
G,
and 50 if B ¼ 20 
G. In all three cases, however, jB=A j drops
to unity for h < 1 (k � 2:8 ; 106 AU). Not until the field is
strong enough to stabilize the bulk medium, B � 230 
G,
does jB=A j exceed unity for h < 1.

Fig. 3.—Transition between the standard Kelvin-Helmholtz instability
(growth rate /h) and the new, slower instability (growth rate /h2) is given
for three magnetic field strengths. The growth rate of the Kelvin-Helmholtz
instability depends on the density, flow velocity and magnetic field strength.

Fig. 2.—Growing instability root of the characteristic equation as a function
of wavelength. The strong magnetic field regime (top) assumes U ¼ 10 km s�1

and B ¼ 1 mG, and the weak magnetic field regime (bottom) assumes U ¼
10 km s�1 and B ¼ 1 
G. The plus signs represent the numerically deter-
mined root. The solid lines represent the analytic approximation to the root,
h and h at short wavelengths, and h and h2) at long wavelengths for the
strong and weak magnetic field regimes, respectively.
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In deriving both the numerical and asymptotic results in the
cases in which x � �ih, the x2 and h2 terms in the denominator
of equation (36) nearly cancel. Thus, the right-hand side of the
equation (36) must be computed using roots to the exact
dispersion relation (eq. [29]).

The critical result from this analysis is that if B ��10 
G,
then at relevant length scales and timescales for bipolar out-
flows (l< 1000 AU and � < 1000 yr), the fluctuations are pri-
marily in the neutrals and not in the ions or magnetic field. In
contrast to the MHD shear flow instabilities simulated by Jones
et al. (1997) and Malagoli et al. (1996), the magnetic field
cannot wind up and dissipate on small scales, and the insta-
bility is primarily hydrodynamic in character.

A comment is due on the expected effect that adding com-
pressibility would have on this model. Frank et al. (1996) and
Jones et al. (1997) found that in a compressible medium, the
Kelvin-Helmholtz instability is still present and grows initially
as the linear theory predicts. We now turn to the observational
implications of this conclusion.

4. OBSERVATIONAL IMPLICATIONS

The calculations presented here do not permit quantitative
predictions for observational signatures of the two instabilities
for ambient ISM entrainment by massive bipolar outflows. We
would need to develop numerical models with two-fluid MHD
that incorporate nonplanar geometry and nonlinear growth and
would need chemical models and radiative transfer calcu-
lations to predict the resulting spectra. Such an analysis is
beyond the scope of this paper. However, several physical
signatures should be robust and may be observable.

4.1. Molecular Spectroscopy

As we showed in x 3.3, unless B is less than �10 
G, over
most of the parameter space of interest only neutrals participate
in the resulting turbulence. That is, only neutrals will have a
velocity significantly different from either the outflow jet or the
ambient ISM. For example, if outflow jets had uniform velocity
emerging from the protostar, then the emission from ionized
molecules should not be detectable at velocities different from
the outflow velocity. This signature should be particularly dis-

tinctive if there are ion species that are present in only one of
these media. Outflow jets probably have a range in velocity,
however, which will make isolating a velocity unique to the
interface region difficult.

If the transition between the jet and the ambient medium can
be resolved, we might expect relatively large differences be-
tween the profiles of charged and neutral species. The ion flow
would be laminar and would show a smooth transition between
the velocity of the core of the jet and the velocity of the am-
bient medium. The neutral flow would show the same range of
velocities but would be turbulent, leading to broader lines.

4.2. Heating

Figure 4 predicts that throughout most of parameter space,
the magnetic field prevents the ions from participating in un-
stable perturbations. The resulting velocity difference between
the ions and neutrals creates friction that can heat the gas. The
heating rate per unit volume is given by

�fric ¼ �n�ni vn � við Þ2� �n�niv
2
n: ð37Þ

For example, assuming vn � 1 km s�1, nn ¼ 103 cm�3, and
ni ¼ 10�4 cm�3 gives �fric � 6 ; 10�24 ergs cm�3 s�1. Assum-
ing that the heating is balanced by radiative cooling, the cor-
responding luminosity density is 0.04 L� pc�3. The frictional
heating rate dominates cosmic-ray (CR) heating. Taking the
latter from Spitzer (1978), we find

�fric

�CR

¼ 1:5 ; 106niv
2
5; ð38Þ

where v5 is the neutral velocity in km s�1. Unlike viscous
heating, which is also strong in a turbulent boundary layer,
�fric is independent of the thickness of the layer.

4.3. Magnetic Field Configuration

The orientation of the magnetic field in the outflow could be
mapped by measuring the polarization of infrared radiation
emitted by the dust grains. According to our analysis, the
magnetic field should remain well organized although the
neutral flow is turbulent, provided that the mean field is aligned
with the flow (if the field were transverse to the flow, the
plasma would be unstable and would carry the field with it, but
the turbulent motions would be perpendicular to the field and
would not strongly bend it).

Observations of a turbulent field in the outflow could be
explained if the ionization fraction were much larger than as-
sumed here, resulting in stronger coupling, or if the grains were
aligned by the turbulent neutral flow rather than by the mag-
netic field. Observations of a straight field, however, demon-
strate only that the field is well organized at or above the scale
resolved by the observations (Heitsch et al. 2001). A low po-
larized intensity could be evidence for a disordered field below
the resolved scale but could also be due to poor alignment of
the grains (Padoan et al. 2001).

5. CONCLUSIONS

Outflows from massive protostars are observed to carry a
large mass flux and to be poorly collimated. Both properties
suggest that these outflows entrain substantial volumes of
ambient ISM material. Turbulence driven by shear flow in-
stabilities at the interface between the jet and the surrounding
medium is one possible mechanism for entrainment.

Fig. 4.—Amplitude of the neutral perturbations relative to the ion pertur-
bations. Numerical results are represented by plus signs. The lines represents
the analytic approximations to the relative perturbations as specified above.
The strong magnetic field regime (top) assumes U ¼ 10 km s�1 and B ¼ 1 mG,
and the weak magnetic field regime (bottom) assumes U ¼ 10 km s�1 and
B ¼ 1 
G.
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In this paper we have examined the Kelvin-Helmholtz in-
stability in a weakly ionized medium with parameters chosen
to be similar to molecular outflows. In order to study effects
introduced by two fluids (plasma and neutral), we carried out
an incompressible stability analysis of the simplest possible
geometry: two uniform media (taken in all examples to have
the same density) in relative motion at speed 2U , separated by
a sharp interface, with a uniform magnetic field parallel to the
flow. Under these conditions, a plasma is unstable if the rela-
tive velocity exceeds the Alfvén speed (Chandrasekhar 1961).
For the parameters of interest to our problem, the plasma is
magnetically stabilized, while the neutrals, in the absence of
frictional coupling to the ions, would always be unstable. In the
limit of perfect frictional coupling, the combined system—
with the Alfvén speed based on the total mass density instead
of the plasma density—could be either stable or unstable,
according to whether the bulk Alfvén speed vA exceeds U.

Most of the analysis in our paper is based on the dispersion
relation derived in x 2, equation (30). Our main result is that for
much of the size range of interest, the ions and neutrals are
sufficiently decoupled that the neutrals are unstable while the
ions are held in place by the magnetic field. At short scales,
the growth rate is well approximated by the growth rate of
the hydrodynamic instability, kU. At longer scales, the fastest
growing mode is either the magnetically modified MHD mode,
if the magnetic field is weak enough (vA <U ), or, if vA > U , a
new mode with growth rate kU (kU=�). The transition between
these modes of instability occurs at kU=� � 1. The dispersion
diagram is plotted in Figure 2. The relative amplitudes of the
ion and neutral fluctuations are shown in Figure 4, demon-
strating that over most of the regime of interest, the ions drop
out of the instability.

We believe these results continue to hold in cylindrical ge-
ometry. In fact, they should be even more pronounced, because
at short wavelengths the cylindrical and planar cases coincide,
while at long wavelengths the instability is suppressed by ge-
ometry. We also expect that more-general perturbations, such
as those with a large transverse wavenumber ky, would be
characterized by similar ion-neutral decoupling.

Although we have not followed the instability into the
nonlinear stage, there is no reason why frictional coupling
should be more efficient at large amplitude, and so we expect
our results to apply to the nonlinear regime. There is, however,
a compelling case to be made for nonlinear calculations: they
are necessary to produce detailed observational predictions. As
such, they should follow the thermal and chemical state of the
gas, as well as its dynamics. Similarly, we expect our results to
apply in compressible media. Numerical simulations by Jones
et al. (1997) and Frank et al. (1996) have shown the Kelvin-
Helmholtz instability is still present when compressibility is
fully treated. The degree of ion-neutral coupling is the same
with or without compressibility unless or until the medium
itself shocks, which could affect the ionization state.
Based on the linear theory, however, it appears that our

model may be tested in several ways, mentioned in x 4: dif-
ferences in line profiles between charged and neutral species,
efficient heating by ion-neutral friction, and the polarimetric
signature of a well-organized magnetic field. We will report on
spectroscopic evidence in a forthcoming paper (C. Watson et al.
2004, in preparation).
Our results do, however, leave us with a conundrum.

Churchwell (1997) pointed out that the rate of entrainment
required to explain the mass flux in outflows is unreasonably
large, if the entrainment is hydrodynamic in nature. The low
degree of ion-neutral coupling predicted by our model suggests
that the entrainment is more hydrodynamic than magneto-
hydrodynamic, although nonlinear simulations and analysis are
necessary to settle the issue.
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Humboldt Foundation. We would also like to acknowledge an
anonymous referee, whose comments improved the manuscript
at many points.

APPENDIX

IONS HELD STATIONARY

We begin with the same assumptions as specified in x 2, with the additional assumption that the ions remain at rest. That is, they
are not disturbed by the perturbation. The equation of motion for the neutral particles is

�n@tvvvvvvvvn þ �nvvvvvvvvn = :vvvvvvvvn ¼ �:Pn � �n�nivvvvvvvvn: ðA1Þ

Assuming a periodic perturbation, we obtain

�n(!þ Ukx)un ¼ �kxPn þ i�n�un ðA2Þ
�n(!þ Ukx)wn ¼ i@zPn þ i�n�wn: ðA3Þ

Taking the curl and combining to eliminate the pressure term, we obtain

�n(!þ Ukx � i�) @ 2
z � k 2x

� �
wn ¼ 0: ðA4Þ

We integrate over the interface to obtain

�f�n(!þ Uk)@zwng ¼ i�f�n�@zwng: ðA5Þ
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We introduce a solution of the form

wn1 ¼ A(!þ Uk)ekz; z < 0 ðA6Þ
wn2 ¼ A(!þ Uk)e�k z; z > 0 ðA7Þ

to obtain

�n !þ Ukð Þ2 � i�n�(!� Uk) ¼ 0: ðA8Þ

After converting to dimensionless notation, we obtain

x2 þ h2 � ix ¼ 0 ðA9Þ

x ¼ 1

2
i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� 4h2

p� 
ðA10Þ

x � 1

2
i � i 1þ 2h2

� �� �
: ðA11Þ

For hT1,

x � i; �ih2: ðA12Þ

Thus, we see that the �ih2 mode observed in x 2 originates from the uniform drag that the neutral particles feel from the uniformly
distributed ionized particles.
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