4 research outputs found

    Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network

    Get PDF
    The energy and mass measurements of jets are crucial tasks for the Large Hadron Collider experiments. This paper presents a new calibration method to simultaneously calibrate these quantities for large-radius jets measured with the ATLAS detector using a deep neural network (DNN). To address the specificities of the calibration problem, special loss functions and training procedures are employed, and a complex network architecture, which includes feature annotation and residual connection layers, is used. The DNN-based calibration is compared to the standard numerical approach in an extensive series of tests. The DNN approach is found to perform significantly better in almost all of the tests and over most of the relevant kinematic phase space. In particular, it consistently improves the energy and mass resolutions, with a 30% better energy resolution obtained for transverse momenta pT > 500 GeV

    Luminosity determination in pppp collisions at s=13\sqrt{s}=13 TeV using the ATLAS detector at the LHC

    Get PDF
    The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pppp collisions at s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosities for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pppp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017-18 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1^{-1}.The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pp collisions at a centre-of-mass energy s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosity for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1\hbox {fb}^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017–2018 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1\hbox {pb}^{-1}.The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pppp collisions at s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosities for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pppp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017-18 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1^{-1}
    corecore