14,292 research outputs found

    Gradient-Based Estimation of Air Flow and Geometry Configurations in a Building Using Fluid Dynamic Adjoint Equations

    Get PDF
    Real-time estimations of temperature distributions and geometric configurations are important to energy efficient buildings and the development of smarter cities. In this paper we formulate a gradient-based estimation algorithm capable of reconstructing the states of doors in a building, as well as its temperature distribution, based on a floor plan and a set of thermostats. Our algorithm solves in real time a convection-diffusion Computer Fluid Dynamics (CFD) model for the air flow in the building as a function of its geometric configuration. We formulate the estimation algorithm as an optimization problem, and we solve it by computing the adjoint equations of our CFD model, which we then use to obtain the gradients of the cost function with respect to the flow\u27s temperature and door states. We evaluate the performance of our method using simulations of a real apartment in the St.\ Louis area. Our results show that the estimation method is both efficient and accurate, establishing its potential for the design of smarter control schemes in the operation of high-performance buildings

    Do androids dream of electric fences? Safety-aware reinforcement learning with latent shielding

    Get PDF
    The growing trend of fledgling reinforcement learning sys- tems making their way into real-world applications has been accompanied by growing concerns for their safety and ro- bustness. In recent years, a variety of approaches have been put forward to address the challenges of safety-aware rein- forcement learning; however, these methods often either re- quire a handcrafted model of the environment to be pro- vided beforehand, or that the environment is relatively simple and low-dimensional. We present a novel approach to safety- aware deep reinforcement learning in high-dimensional envi- ronments called latent shielding. Latent shielding leverages internal representations of the environment learnt by model- based agents to “imagine” future trajectories and avoid those deemed unsafe. We experimentally demonstrate that this approach leads to improved adherence to formally-defined safety specifications

    Post-AGB Stars in Globular Clusters and Galactic Halos

    Get PDF
    We discuss three aspects of post-AGB (PAGB) stars in old populations. (1) HST photometry of the nucleus of the planetary nebula (PN) K 648 in the globular cluster (GC) M15 implies a mass of 0.60 Msun, in contrast to the mean masses of white dwarfs in GCs of ~0.5 Msun. This suggests that K 648 is descended from a merged binary, and we infer that single Pop II stars do not produce visible PNe. (2) Yellow PAGB stars are the visually brightest stars in old populations (Mv ~ -3.3) and are easily recognizable because of their large Balmer jumps; thus they show great promise as a Pop II standard candle. Two yellow PAGB stars in the GC NGC 5986 have the same V magnitudes to within +/-0.05 mag, supporting an expected narrow luminosity function. (3) Using CCD photometry and a u filter lying below the Balmer jump, we have detected yellow PAGB stars in the halo of M31 and in its dwarf elliptical companion NGC 205. With the Milky Way zero point, we reproduce the Cepheid distance to M31, and find that NGC 205 is ~100 kpc further away than M31. The star counts imply a yellow PAGB lifetime of about 25,000 yr, and their luminosities imply masses near 0.53 Msun.Comment: 6 pages, 2 figures. To appear in proceedings of Torun, Poland, workshop on "Post-AGB Objects (Proto-Planetary Nebulae) as a Phase of Stellar Evolution," ed. S.K. Gorn

    Unitarity boomerangs of quark and lepton mixing matrices

    Full text link
    The most popular way to present mixing matrices of quarks (CKM) and leptons (PMNS) is the parametrization with three mixing angles and one CP-violating phase. There are two major options in this kind of parametrizations, one is the original Kobayashi-Maskawa (KM) matrix, and the other is the Chau-Keung (CK) matrix. In a new proposal by Frampton and He, a unitarity boomerang is introduced to combine two unitarity triangles, and this new presentation displays all four independent parameters of the KM parametrization in the quark sector simultaneously. In this paper, we study the relations between KM and CK parametrizations, and also consider the quark-lepton complementarity (QLC) in the KM parametrization. The unitarity boomerang is discussed in the situation of the CK parametrization for comparison with that in the KM parametrization in the quark sector. Then we extend the idea of unitarity boomerang to the lepton sector, and check the corresponding unitarity boomerangs in the two cases of parametrizations.Comment: 18 latex pages, 4 figures. Version accepted for publication in PL

    A_4 flavour symmetry breaking scheme for understanding quark and neutrino mixing angles

    Full text link
    We propose a spontaneous A_4 flavour symmetry breaking scheme to understand the observed pattern of quark and neutrino mixing. The fermion mass eigenvalues are arbitrary, but the mixing angles are constrained in such a way that the overall patterns are explained while also leaving sufficient freedom to fit the detailed features of the observed values, including CP violating phases. The scheme realises the proposal of Low and Volkas to generate zero quark mixing and tribimaximal neutrino mixing at tree-level, with deviations from both arising from small corrections after spontaneous A_4 breaking. In the neutrino sector, the breaking is A_4 --> Z_2, while in the quark and charged-lepton sectors it is A_4 --> Z_3 = C_3. The full theory has A_4 completely broken, but the two different unbroken subgroups in the two sectors force the dominant mixing patterns to be as stated above. Radiative effects within each sector are shown to deviate neutrino mixing from tribimaximal, while maintaining zero quark mixing. Interactions between the two sectors -- "cross-talk" -- induce nonzero quark mixing, and additional deviation from tribimaximal neutrino mixing. We discuss the vacuum alignment challenge the scenario faces, and suggest three generic ways to approach the problem. We follow up one of those ways by sketching how an explicit model realising the symmetry breaking structure may be constructed.Comment: 14 pages, no figures; v3: Section 5 rewritten to correct an error; new section added to the appendix; added references; v4: minor change to appendix C, version to be published by JHE

    Dark Scalar Doublets and Neutrino Tribimaximal Mixing from A_4 Symmetry

    Full text link
    In the context of A_4 symmetry, neutrino tribimaximal mixing is achieved through the breaking of A_4 to Z_3 (Z_2) in the charged-lepton (neutrino) sector respectively. The implied vacuum misalignment of the (1,1,1) and (1,0,0) directions in A_4 space is a difficult technical problem, and cannot be treated without many auxiliary fields and symmetries (and perhaps extra dimensions). It is pointed out here that an alternative scenario exists with A_4 alone and no redundant fields, if neutrino masses are "scotogenic", i.e. radiatively induced by dark scalar doublets as recently proposed.Comment: 8 pages, 2 figures, 1 reference and 1 paragraph adde

    Minimal Modification To The Tri-bimaximal Neutrino Mixing

    Full text link
    Current experimental data on neutrino oscillations are consistent with the tri-bimaximal mixing. If future experimental data will determine a non-zero Ve3V_{e3} and/or find CP violations in neutrino oscillations, there is the need to modify the mixing pattern. We find that a simple neutrino mass matrix, resulting from A4A_4 family symmetry breaking with residual Z3Z_3 and Z2Z_2 discrete symmetries respectively for the Higgs sectors generating the charged lepton and neutrino mass matrices, can satisfy the required modifications. The neutrino mass matrix is minimally modified with just one additional complex parameter compared with the one producing the tri-bimaximal mixing. In this case, the CP violating Jarlskog factor JJ has a simple form (J=Ve1Ve3/23|J|=|V_{e1}V_{e3}|/2\sqrt{3} for real neutrino mass matrix), and also Vμi=1/3V_{\mu i} = 1/\sqrt{3}. We also discuss how this mixing matrix can be tested experimentally.Comment: Latex 11 pages with no figures. References adde

    On the role of global flow instability analysis in closed loop flow control

    Get PDF
    Control of linear flow instabilities has been demonstrated to be an effective theoretical flow control methodology, capable of modifying transitional flows on canonical geometries such as the plane channel and the flat-plate boundary layer. Extending the well-developed theoretical flow control techniques to flows over or through complex geometries requires addressing the issue of efficient capturing of the leading members of the global eigenspectrum pertinent to such flows. The present contribution describes state-of-the-art modal global instability analysis methodologies recently developed in our group, based on matrix formation and time-stepping, respectively. The relative performance of these algorithms is assessed on the recovery of BiGlobal and TriGlobal eigenspectra in the spanwise periodic and the cubic lid-driven cavity, respectively; the adjoint eigenspectrum in the latter flow is recovered for the first time. For three-dimensional flows without any homogeneous spatial direction, the time-stepping methodology was found to outperform the matrix-forming approach and permit recovering the leading TriGlobal eigenmodes in an three-dimensional open cavity of aspect ratio L : D : W = 5 : 1 : 1; theoretical flow control of this configuration is underway
    corecore