We propose a spontaneous A_4 flavour symmetry breaking scheme to understand
the observed pattern of quark and neutrino mixing. The fermion mass eigenvalues
are arbitrary, but the mixing angles are constrained in such a way that the
overall patterns are explained while also leaving sufficient freedom to fit the
detailed features of the observed values, including CP violating phases. The
scheme realises the proposal of Low and Volkas to generate zero quark mixing
and tribimaximal neutrino mixing at tree-level, with deviations from both
arising from small corrections after spontaneous A_4 breaking. In the neutrino
sector, the breaking is A_4 --> Z_2, while in the quark and charged-lepton
sectors it is A_4 --> Z_3 = C_3. The full theory has A_4 completely broken, but
the two different unbroken subgroups in the two sectors force the dominant
mixing patterns to be as stated above. Radiative effects within each sector are
shown to deviate neutrino mixing from tribimaximal, while maintaining zero
quark mixing. Interactions between the two sectors -- "cross-talk" -- induce
nonzero quark mixing, and additional deviation from tribimaximal neutrino
mixing. We discuss the vacuum alignment challenge the scenario faces, and
suggest three generic ways to approach the problem. We follow up one of those
ways by sketching how an explicit model realising the symmetry breaking
structure may be constructed.Comment: 14 pages, no figures; v3: Section 5 rewritten to correct an error;
new section added to the appendix; added references; v4: minor change to
appendix C, version to be published by JHE