12,644 research outputs found

    Recent Advances of Aqueous Electrolytes for Zinc-Ion Batteries to Mitigate Side Reactions: A Review

    Get PDF
    The paper discusses the challenges associated with the performance of zinc-ion batteries (ZIBs), such as side reactions that lead to reduced capacity and lifespan. The strategies for mitigating side reactions in ZIBs, including additives, electrolyte-electrode interface modification, and electrolyte composition optimization, are explored. Combinations of these approaches may be necessary to achieve the best performance for ZIBs. However, continued research is needed to improve the commercial viability of ZIBs. Areas of research requiring attention include the understanding of the mechanisms behind side reactions in ZIBs and the development of cost-effective and scalable manufacturing processes for ZIBs with available electrolyte. By developing effective strategies for mitigating side reactions, researchers can improve the efficiency and lifespan of ZIBs, making them more competitive with lithium-ion batteries in various applications, including grid energy storage

    Studies on the expansion characteristics of the granular bed present in EGSB bioreactors

    Get PDF
    In this study, the expansion characteristics of an anaerobic granular bed in EGSB reactors based on terminal settling velocity study of the granules and the Richardson-Zaki equation (1954) have been investigated. The settling velocity study shows that the mean settling velocity of the granules is in accordance with the Allen formula because the settling process falls within the intermediate flow regime range (

    Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity

    Get PDF
    A comprehensive analysis is given on the modifications of the exciton lifetime and internal quantum efficiency (int) for organic light-emitting devices (OLEDs). A linear relation is derived between the exciton lifetime and int, which is difficult to measure directly. The internal quantum efficiency can thus be estimated easily through the measurement of the exciton lifetime. The exciton lifetimes for OLEDs with weak or strong microcavity are studied experimentally and theoretically. The modification of the exciton lifetime is well explained through the microcavity effect and surface plasmon resonance. An excellent agreement between the experimental and theoretical results is achieved. © 2007 American Institute of Physics.published_or_final_versio

    Monitoring summertime indoor overheating and pollutant risks and natural ventilation patterns of seniors in public housing

    Get PDF
    Indoor heat and air pollution pose concurrent threats to human health and wellbeing, and their effects are more pronounced for vulnerable individuals. This study investigates exposures to summertime indoor overheating and airborne particulate matter (PM2.5) experienced by low-income seniors and explores the potential of natural ventilation on maintaining good indoor thermal conditions and air quality (IAQ). Environmental and behavioural monitoring and a series of interviews were conducted during summer 2017 in 24 senior apartments on three public housing sites in NJ, USA (1930s’ low-rise, 1960s’ high-rise and LEED-certified 2010s’ mid-rise). All sites had high exposures to overheating and PM2.5 concentrations during heat waves and on regular summer days, but with substantial between-site and between-apartment variability. Overheating was higher in the 30s’ low-rise site, while pollutant levels were higher in the 60s’ high-rise. Mixed linear models indicated a thermal and air quality trade-off with window opening (WO), especially in some ‘smoking’ units from the older sites, but also improved both thermal and PM2.5 concentration conditions in 20% of the apartments. Findings suggest that with warmer future summers, greater focus is needed on the interdependencies among (1) thermal and IAQ outcomes and (2) technological and behavioural dimensions of efforts to improve comfort for vulnerable occupants

    IO:I, a near-infrared camera for the Liverpool Telescope

    Get PDF
    IO:I is a new instrument that has recently been commissioned for the Liverpool Telescope, extending current imaging capabilities beyond the optical and into the near-infrared. Cost has been minimized by the use of a previously decommissioned instrument's cryostat as the base for a prototype and retrofitting it with Teledyne's 1.7-μm cutoff Hawaii-2RG HgCdTe detector, SIDECAR ASIC controller, and JADE2 interface card. The mechanical, electronic, and cryogenic aspects of the cryostat retrofitting process will be reviewed together with a description of the software/hardware setup. This is followed by a discussion of the results derived from characterization tests, including measurements of read noise, conversion gain, full well depth, and linearity. The paper closes with a brief overview of the autonomous data reduction process and the presentation of results from photometric testing conducted on on-sky, pipeline processed data. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)

    Measuring portfolio performance using a modified measure of risk

    Get PDF
    This paper reports the results of an investigation into the properties of a theoretical modification of beta proposed by Leland (1999) and based on earlier work of Rubinstein (1976). It is shown that when returns are elliptically symmetric, beta is the appropriate measure of risk and that there are other situations in which the modified beta will be similar to the traditional measure based on the capital asset pricing model. For the case where returns have a normal distribution, it is shown that the criterion either does not exist or reduces exactly to the conventional beta. It is therefore conjectured that the modified measure will only be useful for portfolios that have nonstandard return distributions which incorporate skewness. For such situations, it is shown how to estimate the measure using regression and how to compare the resulting statistic with a traditional estimated beta using Hotelling's test. An empirical study based on stocks from the FTSE350 does not find evidence to support the use of the new measure even in the presence of skewness.Journal of Asset Management (2007) 7, 388-403. doi:10.1057/palgrave.jam.225005

    A Universal Model of Global Civil Unrest

    Get PDF
    Civil unrest is a powerful form of collective human dynamics, which has led to major transitions of societies in modern history. The study of collective human dynamics, including collective aggression, has been the focus of much discussion in the context of modeling and identification of universal patterns of behavior. In contrast, the possibility that civil unrest activities, across countries and over long time periods, are governed by universal mechanisms has not been explored. Here, we analyze records of civil unrest of 170 countries during the period 1919-2008. We demonstrate that the distributions of the number of unrest events per year are robustly reproduced by a nonlinear, spatially extended dynamical model, which reflects the spread of civil disorder between geographic regions connected through social and communication networks. The results also expose the similarity between global social instability and the dynamics of natural hazards and epidemics.Comment: 8 pages, 3 figure

    The roles of apex dipoles and field penetration in the physics of charged, field emitting, single-walled carbon nanotubes

    Get PDF
    A 1 μm long, field emitting, (5, 5) single-walled carbon nanotube (SWCNT) closed with a fullerene cap, and a similar open nanotube with hydrogen-atom termination, have been simulated using the modified neglect of diatomic overlap quantum-mechanical method. Both contain about 80 000 atoms. It is found that field penetration and band bending, and various forms of chemically and electrically induced apex dipole play roles. Field penetration may help explain electroluminescence associated with field emitting CNTs. Charge-density oscillations, induced by the hydrogen adsorption, are also found. Many of the effects can be related to known effects that occur with metallic or semiconductor field emitters; this helps both to explain the effects and to unify our knowledge about FE emitters. However, it is currently unclear how best to treat correlation-and-exchange effects when defining the CNT emission barrier. A new form of definition for the field enhancement factor (FEF) is used. Predicted FEF values for these SWCNTs are significantly less than values predicted by simple classical formulae. The FEF for the closed SWCNT decreases with applied field; the FEF for the H-terminated open SWCNT is less than the FEF for the closed SWCNT but increases with applied field. Physical explanations for this behavior are proposed but the concept of FEF is clearly problematical for CNTs. Curved Fowler-Nordheim plots are predicted. Overall, the predicted field emission performance of the H-terminated open SWCNT is slightly better than that of the closed SWCNT, essentially because a C-H dipole is formed that reduces the height of the tunneling barrier. In general, the physics of a charged SWCNT seems much more complex than hitherto realized. © 2008 American Institute of Physics.published_or_final_versio

    A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection

    Get PDF
    Traditional waterproofing strategies (e.g. plastic seals, superhydrophobic coatings) of strain sensors greatly limit their sensing performance (e.g., sensitivity, working-range, and working-life). Here a unique ultra-stretchable, coating-free superhydrophobic material is developed for high-performence strain sensing in harsh environments. This material integrates high sensitivity (GF of 2.1 to 214), wide sensing range (up to 447% strain), low resolution (<0.2% strain), dynamic durability (over 10,000 stretching cycles at 50% strain), and ultra-robust superhydrophobicity (mechanically, chemically, thermally, and UV impervious) in a single system, outperforming most of reported waterproof sensors. Such remarkable sensing materials can detect full range human movement, pulse rate and vocal fold vibration. The sensing material is designed to be superhydrophobic throughout its bulk material for work in harsh environments (water, corrosive liquid, high humidity, etc.). More importantly, the superhydrophobicity enables the highly sensitive sensor to detect microliter droplets impact with minimized energy loss. Thus, this sensing material should find many potential applications in wearable electronics, measurement platform, rainfall monitoring and intelligent irrigation system
    corecore