44 research outputs found

    The evolution of the plastid chromosome in land plants: gene content, gene order, gene function

    Get PDF
    This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable

    Role of T Cell Recruitment and Chemokine-Regulated Intra-Graft T Cell Motility Patterns in Corneal Allograft Rejection

    No full text
    Keratoplasty is the primary treatment to cure blindness due to corneal opacification. However, immune‐mediated rejection remains the leading cause of keratoplasty failure. Here, we utilize an in vivo imaging approach to monitor, track, and characterize in real‐time the recruitment of GFP‐labeled allo‐specific activated (Bonzo) T cells during corneal allograft rejection. We show that the recruitment of effector T cells to the site of transplantation determined the fate of corneal allografts, and that local intra‐graft production of CCL5 and CXCL9/10 regulated motility patterns of effector T cells in situ, and correlated with allograft rejection. We also show that different motility patterns associate with distinct in vivo phenotypes (round, elongated, and ruffled) of graft‐infiltrating effector T cells with varying proportions during progression of rejection. The ruffled phenotype was characteristic of activated effectors T cells and predominated during ongoing rejection, which associated with significantly increased T cell dynamics within the allografts. Importantly, CCR5/CXCR3 blockade decreased the motility, size, and number of infiltrating T cells and significantly prolonged allograft survival. Our findings indicate that chemokines produced locally within corneal allografts play an important role in the in situ activation and dynamic behavior of infiltrating effector T cells, and may guide targeted interventions to promote graft survival. The authors show that chemokines produced locally within corneal allografts play an important role in the in situ activation and dynamic behavior of infiltrating effector T cells that may guide antichemokine localized interventions to promote corneal allograft survival after transplantation
    corecore