3,875 research outputs found

    Adventitious shoot regeneration from in vitro stem explants of Phellodendron amurense

    Get PDF
    An efficient in vitro plant regeneration system from stem explants was established in Phellodendron amurense. Factors influencing shoot regeneration from stems including culture medium type, combinations of plant growth regulators and carbon source in the medium were investigated. Adventitious shoot regeneration was significantly influenced by the type of medium. Murashige and Skoog medium (MS) was the best for promoting shoot regeneration, followed by Gamborg medium (B5) and woody plant medium (WPM). The combination of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) produced better results for shoot regeneration. The optimum shoot regeneration frequency (74.5%) and number of shoots per explant (12.3) was achieved using MS medium supplemented with 29.7 M BA and 5.8 M NAA. High concentrations of BA and NAA in the medium inhibited shoot formation. Among the three sugars tested, 20 g dm-3 glucose was the optimum for shoot regeneration. Rooting of regenerated shoots was successful on 1/4-strength MS medium with the addition of 15.4 M IBA. Almost 100% plantlets survived acclimatization after transferred to soil.Key words: Phellodendron amurense, callus, shoot regeneration, stem explants

    An improved multiple model particle filtering approach for manoeuvring target tracking using airborne GMTI with geographic information

    Get PDF
    This paper proposes a ground vehicle tracking method using an airborne ground moving target indicator radar where the surrounding geographic information is considered to determine vehicle's movement type as well as constrain its positions. Multiple state models corresponding to different movement modes are applied to represent the vehicle's behaviour in different terrain conditions. Based on geographic conditions and multiple state models, a constrained variable structure multiple model particle filter algorithm is proposed. Compared with the traditional multiple model particle filtering schemes, the proposed algorithm utilises a particle swarm optimisation technique which generates more effective particles and generated particles are constrained into the feasible geographic region. Numerical simulation results in a realistic environment show that the proposed method achieves better tracking performance compared with current state-of-the-art ones for manoeuvring vehicle tracking

    Detail-Preserving Controllable Deformation from Sparse Examples

    Get PDF
    published_or_final_versio

    Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    Get PDF
    2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe

    Pulmonary stretch receptor activity during partial liquid ventilation in cats with healthy lungs

    Get PDF
    Aim: To study whether pulmonary stretch receptor (PSR) activity in mechanically ventilated young cats with healthy lungs during partial liquid ventilation (PLV) is different from that during gas ventilation (GV). Methods: In 10 young cats (4.4 +/- 0.4 months, 2.3 +/- 0.3 kg; mean B SD), PSR instantaneous impulse frequency (PSR f(imp)) was recorded from single fibres in the vagal nerve during GV and PLV with perfluorocarbon (30 ml/kg) at increasing positive inspiratory pressures (PIP; 1.2, 1.8, 2.2 and 2.7 kPa), and at a positive end-expiratory pressure of 0.5 kPa. Results: All PSRs studied during GV maintained their phasic character with increased impulse frequency during inspiration during PLV. Peak PSR fimp was lower at PIP 1.2 kPa (p < 0.05) and at PIP 2.7 kPa (p = 0.10) during PLV than during GV, giving a lower number of PSR impulses at these two settings during PLV (p < 0.05). Conclusion: The phasic character of PSR activity is similar during GV and PLV. PSR activity is not higher during PLV than during GV in cats with healthy lungs, indicating no extensive stretching of the lung during PLV. Copyright (C) 2004 S. Karger AG, Basel

    Using the Pareto principle in genome-wide breeding value estimation

    Get PDF
    Genome-wide breeding value (GWEBV) estimation methods can be classified based on the prior distribution assumptions of marker effects. Genome-wide BLUP methods assume a normal prior distribution for all markers with a constant variance, and are computationally fast. In Bayesian methods, more flexible prior distributions of SNP effects are applied that allow for very large SNP effects although most are small or even zero, but these prior distributions are often also computationally demanding as they rely on Monte Carlo Markov chain sampling. In this study, we adopted the Pareto principle to weight available marker loci, i.e., we consider that x% of the loci explain (100 - x)% of the total genetic variance. Assuming this principle, it is also possible to define the variances of the prior distribution of the 'big' and 'small' SNP. The relatively few large SNP explain a large proportion of the genetic variance and the majority of the SNP show small effects and explain a minor proportion of the genetic variance. We name this method MixP, where the prior distribution is a mixture of two normal distributions, i.e. one with a big variance and one with a small variance. Simulation results, using a real Norwegian Red cattle pedigree, show that MixP is at least as accurate as the other methods in all studied cases. This method also reduces the hyper-parameters of the prior distribution from 2 (proportion and variance of SNP with big effects) to 1 (proportion of SNP with big effects), assuming the overall genetic variance is known. The mixture of normal distribution prior made it possible to solve the equations iteratively, which greatly reduced computation loads by two orders of magnitude. In the era of marker density reaching million(s) and whole-genome sequence data, MixP provides a computationally feasible Bayesian method of analysis

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

    Get PDF
    Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1

    QTL Mapping of Combining Ability and Heterosis of Agronomic Traits in Rice Backcross Recombinant Inbred Lines and Hybrid Crosses

    Get PDF
    BACKGROUND: Combining ability effects are very effective genetic parameters in deciding the next phase of breeding programs. Although some breeding strategies on the basis of evaluating combining ability have been utilized extensively in hybrid breeding, little is known about the genetic basis of combining ability. Combining ability is a complex trait that is controlled by polygenes. With the advent and development of molecular markers, it is feasible to evaluate the genetic bases of combining ability and heterosis of elite rice hybrids through QTL analysis. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we first developed a QTL-mapping method for dissecting combining ability and heterosis of agronomic traits. With three testcross populations and a BCRIL population in rice, biometric and QTL analyses were conducted for ten agronomic traits. The significance of general combining ability and special combining ability for most of the traits indicated the importance of both additive and non-additive effects on expression levels. A large number of additive effect QTLs associated with performance per se of BCRIL and general combining ability, and dominant effect QTLs associated with special combining ability and heterosis were identified for the ten traits. CONCLUSIONS/SIGNIFICANCE: The combining ability of agronomic traits could be analyzed by the QTL mapping method. The characteristics revealed by the QTLs for combining ability of agronomic traits were similar with those by multitudinous QTLs for agronomic traits with performance per se of BCRIL. Several QTLs (1-6 in this study) were identified for each trait for combining ability. It demonstrated that some of the QTLs were pleiotropic or linked tightly with each other. The identification of QTLs responsible for combining ability and heterosis in the present study provides valuable information for dissecting genetic basis of combining ability
    corecore