42 research outputs found

    A False Start in the Race Against Doping in Sport: Concerns With Cycling’s Biological Passport

    Get PDF
    Professional cycling has suffered from a number of doping scandals. The sport’s governing bodies have responded by implementing an aggressive new antidoping program known as the biological passport. Cycling’s biological passport marks a departure from traditional antidoping efforts, which have focused on directly detecting prohibited substances in a cyclist’s system. Instead, the biological passport tracks biological variables in a cyclist’s blood and urine over time, monitoring for fluctuations that are thought to indirectly reveal the effects of doping. Although this method of indirect detection is promising, it also raises serious legal and scientific concerns. Since its introduction, the cycling community has debated the reliability of indirect biological-passport evidence and the clarity, consistency, and transparency of its use in proving doping violations. Such uncertainty undermines the legitimacy of finding cyclists guilty of doping based on this indirect evidence alone. Antidoping authorities should address these important concerns before continuing to pursue doping sanctions against cyclists solely on the basis of their biological passports

    Studies on the antiobesity effect of zinc-α2-glycoprotein in the ob/ob mouse

    Get PDF
    OBJECTIVE: To investigate the mechanism of the lipid depletion by zinc-a(2)-glycoprotein (ZAG). DESIGN: Studies were conducted in the ob/ob mouse, or on isolated adipocytes from these animals or their lean counterparts. RESULTS: Treatment of these animals for 15 days with ZAG (100? µg, intravenously, daily) resulted in a reduction of body weight of 6.55? g compared with phosphate-buffered saline-treated controls, without a change in food or water intake, but with a 0.4?°C rise in rectal temperature. ZAG-treated mice had a 30% reduction in carcass fat mass and a twofold increase in weight of brown adipose tissue. Epididymal adipocytes from ZAG-treated mice showed an increased expression of ZAG and hormone-sensitive lipase (HSL), and this was maintained for a further 3 days in the absence of ZAG. There was an increased lipolytic response to isoproterenol, which was retained for 3 days in vitro in the absence of ZAG. Expression of HSL was also increased in subcutaneous and visceral adipose tissue, as was also adipose triglyceride lipase (ATGL). There was a rapid loss of labelled lipid from epididymal adipose tissue of ZAG-treated mice, but not from the other depots, reflecting the difference in sensitivity to lipolytic stimuli. The increased expression of HSL and ATGL may involve the extracellular signal-regulated kinase (ERK) pathway, as the active (phospho) form was upregulated in all adipose depots after ZAG administration, whereas in vitro studies showed induction of HSL and ATGL by ZAG to be attenuated by PD98059, an inhibitor of the ERK pathway. CONCLUSION: These results suggest that ZAG not only induces direct lipolysis, but also sensitizes adipose tissue to other lipolytic stimuli

    Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6

    Get PDF

    Novel roles for GAPDH in cell death and carcinogenesis

    Get PDF
    Publicado en línea el 25 de septiembre de 2009Growing evidence points to the fact that glucose metabolism has a central role in carcinogenesis. Among the enzymes controlling this energy production pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is of particular interest. Initially identified as a glycolytic enzyme and considered as a housekeeping gene, this enzyme is actually tightly regulated and is involved in numerous cellular functions. Particularly intriguing are recent reports describing GAPDH as a regulator of cell death. However, its role in cell death is unclear; whereas some studies point toward a proapoptotic function, others describe a protective role and suggest its participation in tumor progression. In this study, we highlight recent findings and discuss potential mechanisms through which cells regulate GAPDH to fulfill its diverse functions to influence cell fate.This work was supported in part by l’Association pour la Recherche sur le Cancer, by l’Agence Nationnal de la Recherche, la Fondation de France, Plan Nacional I+D SAF2008-04974 and by grants from The U.S. National Institutes of Health. J-E.R. is a recipient of a contrat d’interface INSERM-CHU de Nice.Peer reviewe
    corecore