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Abstract 

The mechanism of the antiobesity effect of zinc-2-glycoprotein (ZAG) has 

been investigated in the ob/ob mouse.  The lipolytic effect of both isoproterenol and 

ZAG was lower in epididymal adipocytes from ob/ob than lean mice, but at higher 

concentrations of ZAG (>0.23M) there was no differences between the groups.  

There was a lower lipolytic response by adipocytes from subcutaneous and visceral 

deposits, but there was no difference between isoproterenol and ZAG, and no 

difference between lean and ob/ob mice.  ZAG increased expression of hormone 

sensitive lipase (HSL) in isolated epididymal adipocytes after 3h incubation, and this 

was completely attenuated by PD98059, an inhibitor of the extracellular signal-

regulated kinase (ERK) pathway.  Treatment of ob/ob mice with ZAG for 5 days 

increased ZAG expression in epididymal, subcutaneous and visceral adipose tissue 

about two-fold, and this remained elevated in tissue culture in the absence of ZAG for 

a further 3 days.  Expression of HSL and adipose triglyceride lipase (ATGL) was also 

elevated after ZAG administration, but only in epididymal adipose tissue, as was 

ERK.  The increased expression of HSL correlated with the increased lipolytic 

response to ZAG, and the 3-adrenergic receptor (3-AR) agonist BRL37344, 

suggesting that ZAG may act synergistically with 3-AR agonists to mobilise lipids.  

This was strengthened by the observation that ZAG increased the expression of the 

3-AR in brown (BAT) and white adipose tissue (WAT), as well as skeletal muscle.  

There was also an increased expression of uncoupling protein 1 (UCP-1) in both BAT 

and WAT, which would provide an energy sink for the fatty acids released during 

lipolysis.  These results suggest that ZAG may overcome some of the metabolic 

alterations associated with obesity. 
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Introduction 

Obesity and its associated health effects is a major problem for the Western 

World, and is thought to arise through both genetic and environmental influences 

(32).  Obesity has been linked with insulin resistance and type 2 diabetes through 

release from adipocytes of non-esterified fatty acids (NEFA), glycerol and pro-

inflammatory cytokines (25).  The current approach to management involves lifestyle 

alteration combined with pharmacological intervention, although the options for 

treatment are limited. 

We have investigated the potential use of zinc-2-glycoprotein (ZAG) for the 

treatment of obesity using ex-breeder male NMRI mice (36).  ZAG was initially 

identified as the lipid-mobilizing factor (LMF) associated with loss of adipose tissue 

in cancer cachexia (19), and was shown to be tumor-derived (41).  However, later 

studies showed that ZAG was produced by a range of normal tissues including both 

white (WAT) and brown (BAT) adipose tissue (7), with major increases in expression 

in mice bearing a cachexia-inducing tumor, which induced loss of fat mass.  In 

contrast with cachexia expression of ZAG in WAT is low in obese human subjects 

(11) and correlated negatively with body weight, BMI, fat mass, waist and hip 

circumference, as well as plasma insulin levels (15, 30).  The expression level of ZAG 

may be responsible for some of the effects of obesity, since ZAG ‘knock-out’ animals 

gain more weight, especially on a high fat diet, while adipocytes from these animals 

showed a decreased lipolytic response to various agents including catecholamines, 

3-adrenoreceptor (3-AR) agonists and agents which increase cyclic AMP (31).  In 

contrast overexpression of ZAG in mice was associated with a reduced body weight 

and percentage of epididymal fat when they were fed a high fat diet (15).  A reduced 

catecholamine-induced lipolysis and fat oxidation is seen in obese individuals (23), 
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and in first-degree relatives of obese subjects (18), and may play a role in the 

development and maintenance of the increased fat stores.  A reduced hormone-

sensitive lipase (HSL) expression is the best characterized defect contributing to this 

resistance to catecholamines (22).  ZAG has been suggested as a possible candidate 

gene for obesity using the KK/Ta mouse as an animal model of spontaneous type 2 

diabetes (14). 

ZAG has been shown to induce loss of adipose tissue through a lipolytic effect 

on WAT, combined with an increased expression of uncoupling protein-1 (UCP-1) in 

BAT, which would result in an increase in energy expenditure (36).  The lipolytic 

effect arises from activation of adenylyl cyclase to produce cyclic AMP in a GTP-

dependent process (19), which is attenuated by the specific 3-AR antagonist 

SR59230A (33), suggesting that it is mediated through the 3-AR.  This study 

evaluates the mechanism by which ZAG could reduce fat mass in obese subjects 

using the ob/ob mouse as an experimental model. 
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RESEARCH DESIGN AND METHODS 

Materials Freestyle media and RPMI 1640 were purchased from Invitrogen (Paisley, 

UK) and fetal calf serum was from Biosera (Sussex, UK).  Rabbit polyclonal 

antibodies to phospho (Thr-202) and total ERK1, phospho (Ser-552) HSL and 

phospho (Ser-563) adipose triglyceride lipase (ATGL), and chicken polyclonal 

antibody to 3-adrenergic receptors (3-AR) were purchased from Abcam 

(Cambridge, UK).  Mouse monoclonal antibody to human ZAG and peroxidase-

conjugated goat anti-chicken antibody were from Santa Cruz (California, USA).  

Polyclonal rabbit antibodies to UCP1 and UCP3 and Phosphosafe™ Extraction 

Reagent were from Calbiochem (via Merck Chemicals, Nottingham, UK).  

Peroxidase-conjugated goat anti-rabbit and rabbit anti-mouse antibodies were 

purchased from Dako (Cambridge, UK).  Polyclonal rabbit antibody to mouse -actin, 

PD98059, BRL 37344, endotoxin standard, endotoxin free water and the triglyceride 

assay kit were purchased from Sigma Aldrich (Dorset, UK).  Hybond A nitrocellulose 

membranes and enhanced chemiluminescence (ECL) development kits were from GE 

Healthcare (Bucks, UK).  A WAKO colorimetric assay kit for NEFA was purchased 

from Alpha Laboratories (Hampshire, UK), and a mouse insulin ELISA kit was 

purchased from DRG (Marburg, Germany).  Endotoxin was measured with a LAL 

Pyrogent single test kit from Lonza (Bucks, UK).  Glucose measurements were made 

using a Boots (Nottingham, UK) plasma glucose kit. 

 

Animals Obese hyperglycaemic (ob/ob) mice (average weight 90g) were bred in our 

own colony and the origin and characteristics of these animals have been described in 

detail previously (2).  Expression of the ob gene on this background produces a more 

severe form of diabetes than C57BL/6J ob/ob mice.  Mice were housed in a air-
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conditioned room at 22 ± 2°C and fed ad libitum a rat and mouse breeding diet 

(Special Diet Services, Witham, UK) and tap water.  Male mice (20-21 weeks old) 

were grouped into three per cage and administered ZAG (35g daily) by i.v. 

administration.  Both body weight and food and water intake were monitored daily, as 

was body temperature, with use of a rectal thermometer (RS Components, Northants, 

UK). 

 

Production and purification of recombinant human ZAG Human HEK 293F cells 

were transfected with the mammalian cell expression vector pcDNA 3.1, containing 

human ZAG, and selected for growth in neomycin (50g/ml) in Freestyle medium 

under an atmosphere of 5% CO2 in air at 37°C.  Protein levels in the culture medium 

increased progressively with time reaching plateau levels within about 2 weeks of 

seeding.  Cells were removed by centrifugation at 700g for 15min, and the medium 

(200ml) was concentrated into a volume of 1ml of sterile PBS using an Amicon Ultra-

15 centrifugal filter with a cut-off of 10kDa.  The concentrate (containing about 2mg 

protein) was then added to DEAE cellulose (2g) suspended in 20ml 10mM Tris, 

pH8.8, and stirred at 4°C for 2h.  ZAG bound to the DEAE cellulose, which was 

sedimented by centrifugation (1500g for 15min), and was eluted by stirring for 30min 

at 4°C with 20ml 10mM Tris, pH8.8, containing 0.3M NaCl.  After sedimentation the 

supernatant fluid, containing ZAG, was concentrated to a volume of 1ml in sterile 

PBS using the Amicon centrifugal filter.  The ZAG was free of endotoxin as 

determined by a LAL Pyrogent single test kit (Lonza, Bucks, UK).  The purity of the 

recombinant ZAG has previously been reported (34). 
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Preparation of human and murine adipocytes Adipose tissue was minced into small 

fragments and digested in Krebs-Ringer bicarbonate containing 1g/L collagenase and 

4% bovine serum albumin under an atmosphere of 95% oxygen : 5% CO2 at 37°C, as 

described (5).  After 30min the adipocytes were filtered through nylon mesh (pore 

size 250m), centrifuged at 500g for 2min, and washed three times with PBS before 

suspension in RMPI 1640 medium containing 10% FCS and maintained under an 

atmosphere of 5% CO2 in air at 37°C.  The culture medium was replaced daily. 

 

Lipolytic assay For lipolytic assays 105-2x105 adipocytes were incubated with the 

lipolytic agent for 2h in 1ml Krebs-Ringer bicarbonate buffer, pH 7.2, and the extent 

of lipolysis was determined by measuring glycerol released (42).  Control samples 

containing adipocytes alone were analysed to determine the spontaneous glycerol 

release. 

 

Western blot analysis Freshly excised WAT, BAT and gastrocnemius muscle were 

washed in PBS and lysed in Phosphosafe™ Extraction Reagent for 5min at room 

temperature, followed by sonication at 4°C.  Samples of cytosolic protein formed by 

centrifugation at 18,000g for 5min at 4°C were resolved on 12% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis at 180V for approximately 1h, and 

transferred to 0.45m nitrocellulose membranes, which were blocked with 5% Marvel 

in Tris-buffered saline, pH 7.5, at 4°C overnight.  Both primary and secondary 

antibodies were used at a dilution of 1:1000.  Incubation was for 1h at room 

temperature and development was by ECL.  Blots were scanned by a densitometer to 

quantify differences. 
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Statistical analysis Results are shown as mean ±SEM for at least three replicate 

experiments.  Differences in means between groups was determined by one-way 

analysis of variance (ANOVA), followed by Tukey-Kramer multiple comparison test.  

p values <0.05 were considered significant. 
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Results 

Human recombinant ZAG induced lipolysis in murine epididymal adipocytes 

in a dose-related manner (Fig. 1A).  For isoproterenol and low concentrations of ZAG 

(up to 0.23M) the lipolytic effect was reduced in adipocytes from obese (ob/ob) 

mice, although at higher concentrations of ZAG there was no significant difference in 

the extent of lipolysis between lean and obese animals.  The lipolytic response to both 

isoproterenol and ZAG was significantly less in adipocytes from both subcutaneous 

and visceral deposits (Fig. 1B), although there was no significant difference in 

response of adipocytes from obese and non-obese animals.  Freshly isolated human 

subcutaneous adipocytes also showed lipolysis in the presence of ZAG (Fig. 1C) and 

isoproterenol, and the lipolytic response was comparable with murine adipocytes (Fig. 

1B).  The lipolytic response of human adipocytes to ZAG was comparable with that 

for isoproterenol (Fig. 1C).  To determine the mechanism for the increased lipolysis 

by ZAG, adipocytes from non-obese animals were incubated with ZAG for 3h and the 

expression of HSL was determined by Western blotting (Fig. 1D).  ZAG, but not 

isoproterenol increased the expression of phospho HSL, and this was completely 

attenuated by the selective and cell permeable inhibitor of mitogen activated protein 

kinase kinase (MAPKK) PD98059 (10M) (26).  It is known that the extracellular 

signal-regulated kinase (ERK) pathway increases lipolysis and phosphorylates HSL at 

Ser600 (16).  Indeed, lipolysis induced in isolated adipocytes by ZAG and to a lesser 

extent isoproterenol was attenuated by PD98059, although this did not return to basal 

values (Fig. 1E). 

Treatment of ob/ob mice with ZAG produced a decrease in body weight over a 

5 day period (Fig 2A) due to loss of adipose tissue and this was associated with a 

0.4°C increase in body temperature, (Fig. 2B), as previously reported (34) (Fig. 2A).  
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After 5 days treatment with ZAG, ZAG expression in epididymal, subcutaneous and 

visceral deposits was increased about two-fold compared with PBS controls (Fig. 2C).  

Moreover ZAG expression remained elevated in adipocytes in tissue culture in the 

absence of ZAG for a further 3 days (Fig. 2D).  As in vitro experiments had shown 

(Fig. 1D) ZAG administration to ob/ob mice also caused an increased expression of 

phospho HSL in epididymal adipocytes, and this also  remained elevated in tissue 

culture in the absence of ZAG for 3 days (Fig. 2E).  In addition adipocytes from ZAG 

treated mice showed an increased response to the lipolytic action of isoproterenol, and 

this was retained for 3 days when the adipocytes were maintained in tissue culture in 

the absence of ZAG (Fig. 2F).   

There was a differential response to ZAG in the different adipose depots.  

Thus expression of both phospho HSL (Fig. 3A) and adipose triglyceride lipase 

(ATGL) (Fig. 3B) was significantly upregulated by ZAG in epididymal (ep), but not 

in subcutaneous (sc) or visceral (vis) adipose tissue.  This correlated with expression 

of the active (phospho) form of ERK, which showed selective upregulation only in 

epididymal adipose tissue (Fig. 3C).  This, together with the data in Fig. 1D, suggests 

that ERK may be responsible for the increase in phospho HSL.  The increased 

expression of HSL and ATGL in epididymal adipocytes would correlate with the 

increased lipolytic response to ZAG (Fig. 1A) compared with subcutaneous and 

visceral adipocytes (Fig. 1B).  This effect is also seen with the 3-adrenergic receptor 

(3-AR) agonist, BRL 37344 (Fig. 4A), which caused an increased stimulation of 

lipolysis in epididymal adipocytes from ZAG-treated animals, while in subcutaneous 

and visceral adipocytes pretreatment with ZAG had no effect on the lipolytic 

response.  These results suggest that ZAG may act synergistically with 3-AR 

agonists to mobilise lipids.  The sensitisation of adipocytes to BRL 37344 was seen 
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even in short-term culture after 2h incubation with ZAG, but not with isoproterenol 

(Fig. 4B).  The sensitizing effect may arise from the ability of ZAG to induce 

expression of the 3-AR in BAT, WAT and gastrocnemius muscle (Fig. 4C). 

ZAG has been shown to produce upregulation of the expression of UCP1 in a 

process mediated through a 3-AR (37).  The increased expression of the 3-AR in 

BAT and WAT (Fig. 4) would be expected to lead to an increased expression of 

UCP1, which is observed in both BAT (Fig. 5A) and WAT (Fig. 5B) after ZAG 

administration.  In vitro experiments have shown that induction of expression of 

UCP3 by ZAG was attenuated by PD98059, suggesting the involvement of MAPK 

(37).  The increase in expression of ERK in WAT in ZAG-treated mice would 

therefore be expected to lead to an increase in expression of UCP3 as observed (Fig. 

5D).  ZAG also produced an increase in expression of UCP3 in BAT (Fig. 5C).  The 

increased expression of UCP’s would provide a sink for the NEFA released from 

adipose tissue and generate heat, as previously observed (34), since NEFA are the 

principal substrates for thermogenesis in BAT (39). 
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Discussion 

This study shows ZAG to be as efficient as isoproterenol in inducing lipolysis 

in WAT, although its effectiveness against adipocytes from subcutaneous and visceral 

depots was less than that in epididymal adipocytes, as was also observed with 

isoproterenol.  The decreased lipolytic effect of catecholamines and -AR agonists 

towards subcutaneous and visceral adipocytes has been previously reported (28), and 

may be due to differences in number of 3-AR (40).  However, epdidymal adipocytes 

show a more marked reduction in lipolysis after isoproterenol pretreatment than those 

from subcutaneous fat (28).  In addition subcutaneous adipocytes possess a lower 

steady-state level of mRNA for HSL consistent with the reduced lipolysis rate (40).  

Differences in expression of HSL could explain the lower lipolytic response of 

epididymal adipocytes from ob/ob mice to both isoproterenol and ZAG.  Treatment of 

epididymal adipocytes with ZAG, but not isoproterenol, increased expression of HSL, 

although both would be expected to increase intracellular cyclic AMP.  Previous 

studies have shown that catecholamines do not increase expression of HSL, but 

instead translocate it to its substrate on the surfaces of lipid droplets in fat cells (29).  

A recent study (15) has reported an increased expression of HSL mRNA in 

epididymal adipose tissue in mice overexpressing ZAG.  Activation of ERK is 

required for the induction of phospho HSL by ZAG, since it was attenuated by the 

specific inhibitor PD98059.  In addition expression of HSL was increased in 

epididymal adipose tissue of ob/ob mice administered ZAG, but not in visceral or 

subcutaneous adipose tissue, and this correlated with expression of phosphor ERK.  

Mice lacking MAPK phosphatase-1 have increased activities of ERK and p38MAPK 

in WAT, and are resistance to diet-induced obesity, due to enhanced energy 

expenditure (43). 



 - 14 - 

HSL was initially considered to be the rate-limiting enzyme for lipolysis, but 

recent data (17) suggests that ATGL may be rate-limiting.  As with HSL (22) levels of 

ATGL in subcutaneous adipose tissue of obese subjects has been shown to be reduced 

despite an increase in mRNA expression (38), although other studies (6, 24) report a 

decrease in both HSL and ATGL mRNA and protein.  There is a significant 

correlation between mRNA expression of ATGL and HSL in both visceral and 

subcutaneous adipose tissue suggesting a common regulatory mechanism for their 

expression (6, 24).  This may be related to activation of the ERK pathway, since like 

HSL, expression of ATGL was only increased in epididymal adipose tissue of ZAG 

treated mice in which ERK was activated.  The lack of induction of HSL and ATGL 

in visceral and subcutaneous adipose deposits could be due to lower levels of the 3-

AR (40).  Both insulin resistance and hyperinsulinemnia in obese subjects have been 

shown to be negatively correlated with ATGL and HSL protein expression 

independent of fat mass (24).  Thus the ability of ZAG to increase expression of both 

HSL and ATGL would correlate with its ability to attenuate insulin resistance (34). 

Treatment of ob/ob mice with ZAG also increased expression of ZAG in 

epididymal, subcutaneous and visceral adipose tissue. Although expression of ZAG is 

low in obesity (11, 15, 30) its expression in WAT has been shown to be increased 10-

fold in mice with cachexia (7).  This has been shown to be due to an increase in serum 

cortisol (35), while TNF- has been shown to result in a 4-fold decrease in ZAG 

expression in human SGBS adipocytes (3), providing a potential mechanism to 

explain the low levels of ZAG found in adipose tissue of obese subjects (11, 15, 30).  

Induction of ZAG in 3T3-L1 adipocytes by administration of exogenous ZAG has 

been shown to be attenuated by the selective 3-AR antagonist SR59230A, 

suggesting that it is mediated through a 3-AR (35). 
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If this is so, then repeated administration of ZAG might lead to an increase in 

expression, since ZAG has been shown to increase expression of the 3-AR in BAT, 

WAT and skeletal muscle.  This effect is also seen with 3-AR agonists.  Thus 

chronic treatment of ob/ob mice with the 3-AR agonist BRL 35135 resulted in a 

two- fold increase in 3-AR mRNA in BAT (1).  Similar effects were reported with 

the b3-AR agonist CL316,243 in Zucker fa/fa rats (13) and in adipocytes of adult 

humans (8).  Using knock-out mice the antiobesity effect of b3-AR stimulation has 

been through the UCP 1-dependent degradation of fatty acids released from WAT 

(20).  The ability of ZAG to induce expression of the 3-AR would enhance its effect 

on obesity and diabetes.  This may be important for ZAG to exert a therapeutic effect 

in humans where 3-AR play a weaker role in the control of lipolysis than in the 

mouse (4).  The presence of brown adipocytes has recently been reported in adult 

humans (10), suggesting that the same process may be operative. 

ZAG may be necessary for optimal 3-AR action, since ZAG knock-out mice 

showed a lower response to the specific 3-AR agonist CL316243 (31).  Since ZAG 

levels are low in obesity (11, 15, 30), the expression of 3-AR may also be 

suboptimal.  Thus 3-AR agonists may require ZAG for optimal activity, as 

evidenced by the increased lipolytic effect of both isoprenaline and BRL 37344 in 

adipocytes from ob/ob mice treated with ZAG.  In addition many of the effects of 

ZAG in diabetes in this model (34) possibly related to its 3-AR agonist activity (27).  

3-AR agonists induce lipolysis in WAT, both through the classical cyclic AMP and 

PKA pathway, and through the ERK pathway, which accounts for between 15 and 

25% of total lipolysis (16). 
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Previous studies (37) have suggested a role for the 3-AR in the induction of 

UCP1 expression in BAT by ZAG.  3-AR agonists have been shown to induce 

upregulation of UCP1 in BAT through stimulation of p38MAPK downstream of 

cyclic AMP/protein kinase A leading to activation (phosphorylation) of peroxisome 

proliferator-activated receptor (PPAR)  coactivator 1 (PGC-1), as well as ATF-2, 

allowing the CRE and PPAR elements of the UCP1 enhancer to be occupied (9). 

Adipocytes from obese mice also express two-fold lower levels of Gs, a 

stimulatory subunit of the GTP-binding protein, which stimulates adenylyl cyclase 

(12).  ZAG has been shown to increase the expression of Gs and decrease the 

expression of the inhibitory G-protein, Gi, in 3T3 adipocytes (21), suggesting a 

mechanism by which ZAG could increase lipolytic responsiveness, in addition to the 

induction of HSL and ATGL.  These results suggest that ZAG may overcome some of 

the metabolic alterations associated with the obese state. 
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Figure Legends 

Fig. 1 Lipolytic activity of ZAG in adipocytes from lean and ob/ob mice, human 

adipocytes and effect of ZAG on expression of HSL.  (A) Induction of 

lipolysis in murine epididymal adipocytes from lean () and ob/ob () mice 

by isoproterenol or ZAG at the concentrations indicated over a 2h period.  

Differences from lean animals are shown as a, p<0.05; b, p<0.01 or c, 

p<0.001.  (B) Lipolysis in adipocytes from subcutaneous (sc) and visceral 

(vis) deposits from lean and ob/ob mice in the presence of isoproterenol 

(10M;  ) or ZAG (0.58M;   ) compared with basal levels ().  

Differences from epididymal adipocytes in (A) are shown as b, p<0.01.  (C) 

Lipolysis in human sc adipocytes in response to isoproterenol or ZAG over a 

2h time period.  Differences from control are shown as b, p<0.01, or c, 

p<0.001.  (D) Western blot showing expression of phospho HSL in mouse 

epididymal adipocytes after incubation for 3h with isoproterenol (10M) or 

ZAG (0.58M), alone, or in the presence of PD 98059 (10M).  Actin was 

used as a loading control.  The densitometric analysis is an average of three 

separate Western blots and is expressed as a percentage of control in the 

absence of stimulation.  (E) Lipolytic effect of isoproterenol (10M) and ZAG 

(0.58M) in the absence and presence of PD98059 (10M).  Differences from 

control are shown as c, p<0.001, while differences in the presence of PD98059 

are shown as e, p<0.01 or f, p<0.001. 

Fig. 2 Effect of ZAG on body weight of ob/ob mice and expression of ZAG and HSL 

in adipose tissue.  (A) Effect of ZAG (35g; iv; ) or PBS () on body 

weight of ob/ob mice over 5 days.  (B) Rectal temperature of ob/ob mice 

administered PBS () or ZAG ().  (C) Western blot showing expression of 
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ZAG in epididymal (ep), subcutaneous (sc) and visceral (vis) adipose tissue of 

ob/ob mice after 5days continuous administration (35g; iv/day).  Actin 

served as a loading control.  (D) Adipocytes (ep) were removed from mice at 

the end of 5days treatment (day 0) and maintained in RPMI 1640 medium 

containing 10% fetal calf serum in the absence of ZAG for a further 4 days. 

ZAG expression was determined by Western blotting.  (E) Western blot 

showing expression of phospho HSL in ep adipocytes directly after removal 

from mice (day 0) and after a further 4 days in tissue culture in the absence of 

ZAG.  (F) Lipolytic response of ep adipocytes from ob/ob mice treated with 

either PBS () or ZAG (    ) with no additions, or after the addition of 

isoprenaline (10M) to PBS () or ZAG (     ) treated mice.  Differences from 

the respective controls are shown as c, p<0.001, while the difference in 

response to isoprenaline between ZAG and PBS treated mice are shown as e, 

p<0.01 or f, p<0.001. 

Fig. 3 Expression of HSL, ATGL and phospho ERK in WAT of ob/ob mice treated 

with ZAG.  Western blots showing expression of phospho HSL (A), ATGL 

(B) and phospho ERK (C) in epididymal (ep), subcutaneous (sc) and visceral 

(vis) adipocytes of ob/ob mice treated with either PBS or ZAG for 5 days as 

described in the legend to Fig. 2A.  The densitometric analysis represents an 

average of three separate blots.  Differences from PBS treated animals are 

shown as c, p<0.001. 

Fig. 4 Effect of ZAG treatment on response to 3-AR agonists.  (A) Glycerol release 

from epididymal adipocytes treated with PBS () or ZAG (), subcutaneous 

adipocytes treated with PBS (    ) or ZAG (    ) and visceral adipocytes from 

ob/ob mice treated with PBS (    ) or ZAG (     ) in response to BRL 37344.  
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Differences from PBS treated mice are shown as c, p<0.001.  (B) Lipid 

mobilising effect of BRL 37344 in epididymal adipocytes pretreated with 

either isoprenaline (1M) or ZAG (0.58M) for 2h prior to measurement of 

lipolytic activity in the absence (), or presence () of BRL 37344 at the 

concentrations shown.  Differences from control are shown as c, p<0.001, 

while differences in the presence of BRL 37344 are shown as f, p<0.001.  (C) 

Western blots showing expression of the 3-AR in gastrocnemius muscle, 

BAT and WAT of ob/ob mice treated with either PBS or ZAG for 21 days.  

The densitometric analysis is the average of three separate Western blots.  

Differences from control are shown as c, p<0.001. 

Fig. 5 Effect of ZAG on expression of uncoupling proteins.  Western blots showing 

expression of UCP1 in BAT (A) and WAT (B) and expression of UCP1 in 

BAT (C) and WAT (D) in ob/ob mice after treatment with PBS or ZAG.  The 

densitometric analysis is the average of three separate blots.  Differences from 

PBS treated animals are shown as c, p<0.001. 


