1,291 research outputs found

    Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments

    Get PDF
    Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (=257 nm) in the nucleus either at its central part or at its periphery. After 7–9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after micro-irradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combinations of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed

    Evaluation of lymphatic vessel dilatations by anterior segment swept-source optical coherence tomography: Case report

    Get PDF
    Background: Conjunctival lymphangiectasia is a rare condition presumably caused by the obstruction of lymphatic channels or by an abnormal connection between conjunctival lymphatic and blood vessels. Diagnosis is based on clinical appearance and histology. We report a case of conjunctival lymphangiectasia in which anterior segment optical coherence tomography (OCT) was used to assist the diagnosis and the planning of the biopsy location. Case presentation: A 31-year-old woman was referred with repeated episodes of conjunctival "hemorrhages" and chemosis with extended recovery periods over the last months. Other symptoms were dryness, redness, burning sensation and itching. Photo documentation, anterior segment OCT, ultrasound, computer tomography (CT) and magnetic resonance imaging (MRI) of the brain were performed. MRI revealed dilated atypical Virchow-Robin space (VRS). Conjunctival biopsy was taken and the location of the biopsy was selected based on OCT findings. Based on the clinical appearance we suspected the case to be conjunctival lymphangiectasia or lymphangioma. Histology and immunhistochemistry confirmed the diagnosis of conjunctival lymphangiectasia. Conclusions: Anterior segment OCT is a non-invasive tool, useful in the evaluation of conjunctival lesions and planning surgery. © 2017 The Author(s)

    PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in intracellular signal transduction. Due to the difficulty in performing high-throughput mass spectrometry-based experiment, there is a desire to predict phosphorylation sites using computational methods. However, previous studies regarding <it>in silico </it>prediction of plant phosphorylation sites lack the consideration of kinase-specific phosphorylation data. Thus, we are motivated to propose a new method that investigates different substrate specificities in plant phosphorylation sites.</p> <p>Results</p> <p>Experimentally verified phosphorylation data were extracted from TAIR9-a protein database containing 3006 phosphorylation data from the plant species <it>Arabidopsis thaliana</it>. In an attempt to investigate the various substrate motifs in plant phosphorylation, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. Profile hidden Markov model (HMM) is then applied to learn a predictive model for each subgroup. Cross-validation evaluation on the MDD-clustered HMMs yields an average accuracy of 82.4% for serine, 78.6% for threonine, and 89.0% for tyrosine models. Moreover, independent test results using <it>Arabidopsis thaliana </it>phosphorylation data from UniProtKB/Swiss-Prot show that the proposed models are able to correctly predict 81.4% phosphoserine, 77.1% phosphothreonine, and 83.7% phosphotyrosine sites. Interestingly, several MDD-clustered subgroups are observed to have similar amino acid conservation with the substrate motifs of well-known kinases from Phospho.ELM-a database containing kinase-specific phosphorylation data from multiple organisms.</p> <p>Conclusions</p> <p>This work presents a novel method for identifying plant phosphorylation sites with various substrate motifs. Based on cross-validation and independent testing, results show that the MDD-clustered models outperform models trained without using MDD. The proposed method has been implemented as a web-based plant phosphorylation prediction tool, PlantPhos <url>http://csb.cse.yzu.edu.tw/PlantPhos/</url>. Additionally, two case studies have been demonstrated to further evaluate the effectiveness of PlantPhos.</p

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    Counsellee’s experience of cancer genetic counselling with pedigrees that automatically incorporate genealogical and cancer database information

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.While pedigree drawing software is often utilised in genetic services, the use of genealogical databases in genetic counselling is unusual. This is mainly because of the unavailability of such databases in most countries. Electronically generated pedigrees used for cancer genetic counselling in Iceland create pedigrees that automatically incorporate information from a large, comprehensive genealogy database and nation-wide cancer registry. The aim of this descriptive qualitative study was to explore counsellees' experiences of genetic services, including family history taking, using these electronically generated pedigrees. Four online focus groups with 19 participants were formed, using an asynchronous posting method. Participants were encouraged to discuss their responses to questions posted on the website by the researcher. The main themes arising were motivation, information and trust, impact of testing and emotional responses. Most of the participants expressed trust in the method of using electronically generated pedigrees, although some voiced worries about information safety. Many experienced worry and anxiety while waiting for results of genetic testing, but limited survival guilt was noted. Family communication was either unchanged or improved following genetic counselling. The use of electronically generated pedigrees was well received by participants, and they trusted the information obtained via the databases. Age did not seem to influence responses. These results may be indicative of the particular culture in Iceland, where genealogical information is well known and freely shared. Further studies are needed to determine whether use of similar approaches to genealogical information gathering may be acceptable elsewhere

    Bax Function in the Absence of Mitochondria in the Primitive Protozoan Giardia lamblia

    Get PDF
    Bax-induced permeabilization of the mitochondrial outer membrane and release of cytochrome c are key events in apoptosis. Although Bax can compromise mitochondria in primitive unicellular organisms that lack a classical apoptotic machinery, it is still unclear if Bax alone is sufficient for this, or whether additional mitochondrial components are required. The protozoan parasite Giardia lamblia is one of the earliest branching eukaryotes and harbors highly degenerated mitochondrial remnant organelles (mitosomes) that lack a genome. Here we tested whether human Bax expressed in Giardia can be used to ablate mitosomes. We demonstrate that these organelles are neither targeted, nor compromised, by Bax. However, specialized compartments of the regulated secretory pathway are completely ablated by Bax. As a consequence, maturing cyst wall proteins that are sorted into these organelles are released into the cytoplasm, causing a developmental arrest and cell death. Interestingly, this ectopic cargo release is dependent on the carboxy-terminal 22 amino acids of Bax, and can be prevented by the Bax-inhibiting peptide Ku70. A C-terminally truncated Bax variant still localizes to secretory organelles, but is unable to permeabilize these membranes, uncoupling membrane targeting and cargo release. Even though mitosomes are too diverged to be recognized by Bax, off-target membrane permeabilization appears to be conserved and leads to cell death completely independently of mitochondria

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Non-invasive beam profile monitor for medical accelerators

    Get PDF
    A beam profile monitor based on a supersonic gas-curtain is currently under development for transverse profile diagnostics of electron and proton beams in the High Luminosity LHC. This monitor uses a thin supersonic gas curtain that crosses the primary beam to be characterized under an angle of 45 degrees. The fluorescence caused by the interaction between the beam and gas-curtain is detected using a specially designed imaging system to determine the 2D transverse profile of the primary beam. Another prototype monitor based on beam induced ionization is installed at The Cockcroft Institute. This paper presents the design features of both the monitors, the gas-jet curtain formation and various experimental tests, including profile measurements of an electron beam, using helium, nitrogen and neon as gases. Such a non-invasive online beam profile monitor would be highly desirable also for medical LINAC’s and storage rings as it can characterize the beam without stopping machine operation. The paper discusses opportunities for simplifying the monitor design for integration into a medical accelerator and expected monitor performance
    • …
    corecore