1,832 research outputs found
Reinforcement Learning for Safe Robot Control using Control Lyapunov Barrier Functions
Reinforcement learning (RL) exhibits impressive performance when managing complicated control tasks for robots. However, its wide application to physical robots is limited by the absence of strong safety guarantees. To overcome this challenge, this paper explores the control Lyapunov barrier function (CLBF) to analyze the safety and reachability solely based on data without explicitly employing a dynamic model. We also proposed the Lyapunov barrier actor-critic (LBAC), a model-free RL algorithm, to search for a controller that satisfies the data-based approximation of the safety and reachability conditions. The proposed approach is demonstrated through simulation and real-world robot control experiments, i.e., a 2D quadrotor navigation task. The experimental findings reveal this approach's effectiveness in reachability and safety, surpassing other model-free RL methods
Consideration of Human Factors in a Design of Fire-rescue Window
Fire-rescue window is a NPD (new product development) project that aims to increase the successful rate of fire rescue. The concept attempts being used in residential buildings and public constructions. The project places greater emphasis on providing a safe space for sufferers such as elder people, children and disables. It intended to insulate people from a fire through easy operations and to enhance safety and usability. After several tests, it is proofed that the product appears to be an effective and creative solution in fire rescue. Human factors knowledge has been considered over the NPD process at both physical (anthropometric) and psychological (cognitive) levels. Based on background research and application of new material & technology, the concept learned from mechanism principle and assimilated into understanding of environment/system design, Kansei engineering and material technology. Driven by user centred design, the design conducted various research methods in terms of observation, recording and analysis. Sufferers’ data and information have been discovered/ collected, in particular disables. This helps to determine a proper route of escaping. A prototype of concept simulated the window’s covetable structure and function, as well as testified the rationality of special usage. The fire-rescue window is named as - ‘Harbour’, which won the gold medal of ‘Janus Design Award 2016’ in France. ‘Harbour’ has been recognized as one of the successful solutions in the field of fire rescue. It also passed the ergonomic evaluation and is expected to satisfy various rescue requirements precisely and efficiently
Methane storms as a driver of Titan's dune orientation
Titan's equatorial regions are covered by eastward propagating linear dunes.
This direction is opposite to mean surface winds simulated by Global Climate
Models (GCMs), which are oriented westward at these latitudes, similar to trade
winds on Earth. Different hypotheses have been proposed to address this
apparent contradiction, involving Saturn's gravitational tides, large scale
topography or wind statistics, but none of them can explain a global eastward
dune propagation in the equatorial band. Here we analyse the impact of
equinoctial tropical methane storms developing in the superrotating atmosphere
(i.e. the eastward winds at high altitude) on Titan's dune orientation. Using
mesoscale simulations of convective methane clouds with a GCM wind profile
featuring superrotation, we show that Titan's storms should produce fast
eastward gust fronts above the surface. Such gusts dominate the aeolian
transport, allowing dunes to extend eastward. This analysis therefore suggests
a coupling between superrotation, tropical methane storms and dune formation on
Titan. Furthermore, together with GCM predictions and analogies to some
terrestrial dune fields, this work provides a general framework explaining
several major features of Titan's dunes: linear shape, eastward propagation and
poleward divergence, and implies an equatorial origin of Titan's dune sand.Comment: Published online on Nature Geoscience on 13 April 201
Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells
Epstein-Barr virus (EBV) is implicated as an aetiological factor in B lymphomas and nasopharyngeal carcinoma. The mechanisms of cell-free EBV infection of nasopharyngeal epithelial cells remain elusive. EBV glycoprotein B (gB) is the critical fusion protein for infection of both B and epithelial cells, and determines EBV susceptibility of non-B cells. Here we show that neuropilin 1 (NRP1) directly interacts with EBV gB 23-431. Either knockdown of NRP1 or pretreatment of EBV with soluble NRP1 suppresses EBV infection. Upregulation of NRP1 by overexpression or EGF treatment enhances EBV infection. However, NRP2, the homologue of NRP1, impairs EBV infection. EBV enters nasopharyngeal epithelial cells through NRP1-facilitated internalization and fusion, and through macropinocytosis and lipid raft-dependent endocytosis. NRP1 partially mediates EBV-activated EGFR/RAS/ERK signalling, and NRP1-dependent receptor tyrosine kinase (RTK) signalling promotes EBV infection. Taken together, NRP1 is identified as an EBV entry factor that cooperatively activates RTK signalling, which subsequently promotes EBV infection in nasopharyngeal epithelial cells. © 2014 Macmillan Publishers Limited. All rights reserved.published_or_final_versio
Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed
Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)
Transport Through Andreev Bound States in a Graphene Quantum Dot
Andreev reflection-where an electron in a normal metal backscatters off a
superconductor into a hole-forms the basis of low energy transport through
superconducting junctions. Andreev reflection in confined regions gives rise to
discrete Andreev bound states (ABS), which can carry a supercurrent and have
recently been proposed as the basis of qubits [1-3]. Although signatures of
Andreev reflection and bound states in conductance have been widely reported
[4], it has been difficult to directly probe individual ABS. Here, we report
transport measurements of sharp, gate-tunable ABS formed in a
superconductor-quantum dot (QD)-normal system, which incorporates graphene. The
QD exists in the graphene under the superconducting contact, due to a
work-function mismatch [5, 6]. The ABS form when the discrete QD levels are
proximity coupled to the superconducting contact. Due to the low density of
states of graphene and the sensitivity of the QD levels to an applied gate
voltage, the ABS spectra are narrow, can be tuned to zero energy via gate
voltage, and show a striking pattern in transport measurements.Comment: 25 Pages, included SO
Ballistic Josephson junctions in edge-contacted graphene
Hybrid graphene-superconductor devices have attracted much attention since
the early days of graphene research. So far, these studies have been limited to
the case of diffusive transport through graphene with poorly defined and modest
quality graphene-superconductor interfaces, usually combined with small
critical magnetic fields of the superconducting electrodes. Here we report
graphene based Josephson junctions with one-dimensional edge contacts of
Molybdenum Rhenium. The contacts exhibit a well defined, transparent interface
to the graphene, have a critical magnetic field of 8 Tesla at 4 Kelvin and the
graphene has a high quality due to its encapsulation in hexagonal boron
nitride. This allows us to study and exploit graphene Josephson junctions in a
new regime, characterized by ballistic transport. We find that the critical
current oscillates with the carrier density due to phase coherent interference
of the electrons and holes that carry the supercurrent caused by the formation
of a Fabry-P\'{e}rot cavity. Furthermore, relatively large supercurrents are
observed over unprecedented long distances of up to 1.5 m. Finally, in the
quantum Hall regime we observe broken symmetry states while the contacts remain
superconducting. These achievements open up new avenues to exploit the Dirac
nature of graphene in interaction with the superconducting state.Comment: Updated version after peer review. Includes supplementary material
and ancillary file with source code for tight binding simulation
QuantiFERON®-TB gold in-tube performance for diagnosing active tuberculosis in children and adults in a high burden setting.
To determine whether QuantiFERON®-TB Gold In-Tube (QFT) can contribute to the diagnosis of active tuberculosis (TB) in children in a high-burden setting and to assess the performance of QFT and tuberculin skin test (TST) in a prospective cohort of TB suspect children compared to adults with confirmed TB in Tanzania. Sensitivity and specificity of QFT and TST for diagnosing active TB as well as indeterminate QFT rates and IFN-γ levels were assessed in 211 TB suspect children in a Tanzanian district hospital and contrasted in 90 adults with confirmed pulmonary TB. Sensitivity of QFT and TST in children with confirmed TB was 19% (5/27) and 6% (2/31) respectively. In adults sensitivity of QFT and TST was 84% (73/87) and 85% (63/74). The QFT indeterminate rate in children and adults was 27% and 3%. Median levels of IFN-γ were lower in children than adults, particularly children <2 years and HIV infected. An indeterminate result was associated with age <2 years but not malnutrition or HIV status. Overall childhood mortality was 19% and associated with an indeterminate QFT result at baseline. QFT and TST showed poor performance and a surprisingly low sensitivity in children. In contrast the performance in Tanzanian adults was good and comparable to performance in high-income countries. Indeterminate results in children were associated with young age and increased mortality. Neither test can be recommended for diagnosing active TB in children with immature or impaired immunity in a high-burden setting
Study of psi(2S) decays to X J/psi
Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million
psi(2S) events collected with the BESI detector, the branching fractions of
psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of
psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta
J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) ->
pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and
B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026
\pm 0.055.Comment: 13 pages, 8 figure
- …