2,163 research outputs found

    Influence of Doubled CO2 on Ozone via Changes in the Brewer–Dobson Circulation

    Get PDF
    In this short note, the effect of enhanced circulation due to doubling CO2 on ozone is investigated. The difference of Brewer–Dobson circulation (BDC) between the doubled CO2 and control run from an idealized atmospheric general circulation model is added to the BDC climatology derived from National Centers for Environmental Prediction—Department of Energy Reanalysis 2 (NCEP2) from 1979 to 2002. Then it is used to drive the California Institute of Technology/Jet Propulsion Laboratory (Caltech/JPL) two-dimensional chemistry and transport model. The results reveal that the total ozone increases by 7 and 3.5 Dobson units (DU) in the high latitudes of the Northern and Southern Hemispheres, respectively, and decreases by 4 DU in the Tropics as a result of the increase in BDC associated with doubled CO2. If the change of eddy mixing coefficients after doubling CO2 is also considered, the total ozone will increase by 6.5 and 3 DU in the high latitudes of the Northern and Southern Hemispheres after combining both effects from the change in BDC and eddy mixing coefficients

    Sampling Trees from Evolutionary Models

    Get PDF
    A wide range of evolutionary models for species-level (and higher) diversification have been developed. These models can be used to test evolutionary hypotheses and provide comparisons with phylogenetic trees constructed from real data. To carry out these tests and comparisons, it is often necessary to sample, or simulate, trees from the evolutionary models. Sampling trees from these models is more complicated than it may appear at first glance, necessitating careful consideration and mathematical rigor. Seemingly straightforward sampling methods may produce trees that have systematically biased shapes or branch lengths. This is particularly problematic as there is no simple method for determining whether the sampled trees are appropriate. In this paper, we show why a commonly used simple sampling approach (SSA)—simulating trees forward in time until n species are first reached—should only be applied to the simplest pure birth model, the Yule model. We provide an alternative general sampling approach (GSA) that can be applied to most other models. Furthermore, we introduce the constant-rate birth-death model sampling approach, which samples trees very efficiently from a widely used class of models. We explore the bias produced by SSA and identify situations in which this bias is particularly pronounced. We show that using SSA can lead to erroneous conclusions: When using the inappropriate SSA, the variance of a gradually evolving trait does not correlate with the age of the tree; when the correct GSA is used, the trait variance correlates with tree age. The algorithms presented here are available in the Perl Bio::Phylo package, as a stand-alone program TreeSample, and in the R TreeSim packag

    An Investigation of the Recoverable Robust Assignment Problem

    Get PDF
    • …
    corecore