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Abstract.—A wide range of evolutionary models for species-level (and higher) diversification have been developed. These
models can be used to test evolutionary hypotheses and provide comparisons with phylogenetic trees constructed from real
data. To carry out these tests and comparisons, it is often necessary to sample, or simulate, trees from the evolutionary mod-
els. Sampling trees from these models is more complicated than it may appear at first glance, necessitating careful consid-
eration and mathematical rigor. Seemingly straightforward sampling methods may produce trees that have systematically
biased shapes or branch lengths. This is particularly problematic as there is no simple method for determining whether the
sampled trees are appropriate. In this paper, we show why a commonly used simple sampling approach (SSA)—simulating
trees forward in time until n species are first reached—should only be applied to the simplest pure birth model, the Yule
model. We provide an alternative general sampling approach (GSA) that can be applied to most other models. Further-
more, we introduce the constant-rate birth–death model sampling approach, which samples trees very efficiently from a
widely used class of models. We explore the bias produced by SSA and identify situations in which this bias is particularly
pronounced. We show that using SSA can lead to erroneous conclusions: When using the inappropriate SSA, the variance
of a gradually evolving trait does not correlate with the age of the tree; when the correct GSA is used, the trait variance cor-
relates with tree age. The algorithms presented here are available in the Perl Bio::Phylo package, as a stand-alone program
TreeSample, and in the R TreeSim package. [Algorithms; distribution; evolutionary models; phylogenetic trees; sampling;
simulating.]

Evolutionary models have been developed for many
reasons. One of their main uses has been to try to ex-
plain the evolution of biological diversity for organisms.
Studies in this field fit and compare a developed model
with a data set (a record of fossil presence through time
or a phylogeny). Comparing models of evolution with a
data set is an important part of hypothesis testing and an
integral part of the scientific method (for example, see
Sepkoski 1982; Bininda-Edmonds et al. 2007; and for a
review, see Mooers and Heard 1997; Mooers et al. 2007).
In this paper, we investigate the issue of comparing an
evolutionary model with a reconstructed phylogeny of
present-day species.

A reconstructed phylogeny is a tree of age t, contain-
ing n extant species. This reconstructed phylogeny is
compared with model trees with the same age (t) and
number of extant species (n). The properties of the trees
predicted by most evolutionary models cannot be de-
scribed analytically, hence it is necessary to simulate the
trees. One starts at time t in the past and evolves trees
under the model up to the present day. As n species are
observed at the present day, only simulations with n
present-day species shall be considered and compared
with the reconstructed phylogeny. The time t in the past
is an inferred uncertain value in the phylogeny, and
therefore it is often preferable to only condition the sim-
ulations on the number of extant species (n) and not the
age of the tree (t).

There are numerous ways to produce trees with a
given number of species from an evolutionary model.
The most widely used simple sampling approach (SSA)
starts with a single species and evolves a tree until n

species are reached. The simulation is stopped with the
next speciation or extinction event.

We show that the SSA is appropriate for the widely
used Yule and coalescent models, however there are
fundamental problems applying these approaches to
other evolutionary models. Most obviously, later peri-
ods with n species are disregarded and pendant edges
(i.e., edges adjacent to the leaves) are too long due
to stopping after the interval of observing n species.
Hence, the SSA produces trees with systematically
biased shapes and/or branch lengths. Most appar-
ently, 1) stopping at the next speciation or extinction
event is extreme and suggests a bias in the pendant
edge lengths (i.e., edges adjacent to the leaves) and 2)
for models that explicitly include extinction, the SSA
disregards possible later periods where n species are
extant.

In this paper, alternative general sampling approaches
(GSAs) are provided that are theoretically sound and
easy to apply even for complex models. Furthermore,
we provide a very fast and efficient approach for sam-
pling under a constant-rate birth–death process model,
the birth–death sampling approach (BDSA). We in-
vestigate the importance of using our new sampling
approaches over the established methods for the
constant-rate birth–death models. This is achieved by
comparing samples of trees produced by the different
sampling approaches. The SSA induces a strong bias in
the age of a tree (SSA trees are too young) and a less
pronounced bias in the relative timing of the speciation
events (the direction of the bias depends on the ratio
of extinction rate and speciation rate). Furthermore, the
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SSA induces a negligible bias in the tree shape dis-
tribution for incomplete taxon sampling. We identify
attributes of other models that will result in the SSA
producing more biased samples.

We conclude the paper by showing that using inap-
propriate sampling approaches can lead to erroneous
conclusions about evolutionary mechanisms. This is
demonstrated using a case study first considered by
Purvis (2004), where the correlation between the age
of a tree and the variance of an evolving trait is ex-
amined. Under a punctuational trait evolution model,
there is no correlation. However, under a gradual trait
evolution model, trees sampled using the SSA show no
correlation and trees sampled using the correct GSA
show significant correlation. This shows that using ex-
act sampling methods not only is of theoretical interest
but also can have major effects on conclusions in data
analysis: A study based on SSA would suggest that data
with no correlation between trait variance and tree age
are compatible with a gradual trait evolution model,
whereas a study based on the correct GSA would sug-
gest otherwise.

The sampling methods we present are not the fastest
or most sophisticated; however, in our opinion they are
the easiest to implement and applicable to the broadest
possible range of models. Most of our algorithms are im-
plemented in the Perl Bio::Phylo package as well as the
R TreeSim package, where they can easily be applied to
any suitable evolutionary model. For those users unfa-
miliar with Perl or R, we have also made them available
using a stand-alone GUI TreeSample. The Perl tools and
TreeSample are freely available from Hartmann (2010).
The R package TreeSim can be downloaded from Stadler
(2010). Lastly, we note that although we present our
work in the context of evolutionary models of species
diversification, our methods can be applied to other
scenarios where birth–death processes are modeled, for
example, gene trees (Karev et al. 2003; Hahn et al. 2005;
Oakley et al. 2006) or transmission of infectious diseases
(Tanaka et al. 2006).

SAMPLING METHODS

Throughout this paper, the aim is to produce a sample
from the tree probability distribution induced by an evo-
lutionary model. The first problem is that this tree prob-
ability distribution is ill defined for most evolutionary
models. Under most models, trees evolve perpetually
and trees of all ages are possible, hence the expected age
of the tree (the time between the root and the tips) is in-
finite. To obtain a probability distribution, it is therefore
necessary to condition on some aspect of the tree; the
number of species and the age of the tree are arguably
the 2 most common and useful choices.

Conditioning on the age of a tree, t, is appropriate if
we wish to compare a model with trees of known age or
want to test methods on simulated trees of a given age.
It is relatively easy to sample trees of age t from an evo-
lutionary model. The tree is simply evolved according to

the model until it has reached the desired age. This pro-
cess is repeated until a sufficient number of trees have
been sampled.

Conditioning on the number of species, n, in a tree T
may be commonly required. The age of a reconstructed
tree may only be known with limited accuracy, however
the number of species in the (reconstructed) tree is fixed.
Consequently, it may be more appropriate to use sam-
ples from an evolutionary model with a fixed number of
species (we also consider incomplete taxon sampling).
Sampling from the tree distribution conditional on the
number of species, p(T |n), is the basis of this paper.

Throughout this paper, we assume a uniform prior
on the age of the tree as in Popovic (2004), Aldous and
Popovic (2005), and Gernhard (2008). Consider a large
number of simulation runs that begin at a uniformly
distributed time before the present. Trees obtained by
selecting only those simulations that have n species at
the present are a sample from p(T |n). This is a conve-
nient way of interpreting the distribution but is not a
practical sampling approach as the simulation starting
time is taken from an ill-defined distribution (between
an infinite time in the past and the present). A given
model (and its parameters) will induce a distribution
on the age of the tree given its size. All our knowledge
about the age of a tree is encapsulated in the model
and the chosen parameter values; the uniform prior
on the tree age represents the fact that we have no
further knowledge about the tree age outside of these
parameters.

Current Approaches

One SSA for sampling trees with n species has seen
wide usage. With this approach, a tree is evolved under
the model until it has n species. The length of the pen-
dant edges is the time until the next event (speciation
or extinction), which is disregarded. This approach pro-
duces trees conditional on the next event (speciation or
extinction) occurring immediately after the end of the
tree, which, we show here, is generally not the same dis-
tribution as p(T |n). It is difficult to justify this approach
as it produces a sample of trees equivalent to what we
would expect if all “real” trees were observed immedi-
ately prior to a speciation or an extinction event.

“PhyloGen” (Rambaut 2002) is a freely available tree
sampler that has been used in a number of studies, for
example, Shaw et al. (2003), Venditti et al. (2006), Weir
(2006), and Hohl and Ragan (2007). It permits users to
sample trees from constant-rate birth–death processes
and episodic speciation models. These trees are condi-
tioned on the age of the tree or the number of species,
n. Conditioning on n in PhyloGen simply terminates a
tree after it first reaches n species. Trees sampled with
PhyloGen are younger than expected for our interpreta-
tion of p(T |n), and the pendant edges are shorter than
expected—in fact, the species produced by the last spe-
ciation event have 0 length edges. If the last speciation
event is removed (creating a tree with n − 1 species),
sampling trees with PhyloGen is equivalent to SSA with
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n− 1 species when we have a model without extinction.
Due to this similarity, throughout the remainder of this
paper, we only consider SSA. There are 3 main possible
problems with SSA and PhyloGen.

Problem 1. As we have noted, the pendant edges pro-
duced by SSA and PhyloGen have what appear to be
extreme values. PhyloGen pendant edges seem to be too
short, whereas those produced by SSA appear to be too
long.

Problem 2. SSA and PhyloGen stop evolving the tree
during (or just after) the first period of time where the
tree has n species. For models with extinction, the num-
ber of species will fluctuate up and down so there may
be many periods during which the tree has n leaves. For
such models, SSA and PhyloGen will result in younger
trees than expected.

Problem 3. A final concern with SSA and PhyloGen is
that each model simulation run makes the same contri-
bution to the final sample—one single tree. However,
from our interpretation of p(T |n), the probability of ob-
serving a given simulation depends on the duration for
which the simulated tree had n species—for example, if
this duration is short, it is unlikely that the simulated
tree will be observed although it has n species.

Pure-Birth Memoryless Models

We begin by considering pure-birth memoryless
models—models that do not explicitly include extinc-
tion (pure birth) and where future evolution depends
only on the number of extant species (memoryless). This
class of models is of particular interest as an approach
similar to SSA can be used to correctly sample phyloge-
netic trees from them. Furthermore, this class of models
includes the most widely used speciation model—the
Yule model (Yule 1924; Harding 1971)—and the most
widely used null model in population genetics—the
coalescent model (Kingman 1982a, 1982b, 1982c).

Under the Yule model, each species has the same
probability of speciating per unit time and this specia-
tion rate is constant over time. Consequently, the time
between speciation events is exponentially distributed
with parameter mλ, where m is the number of species
that are extant and λ is the intrinsic rate of speciation.
The coalescent model is derived from population ge-
netics principles but is essentially the same as the Yule
model with one exception—the time between coales-
cent events is exponentially distributed with parameter(m

2

)
(in the following, we will use “speciation” for both

speciation and coalescent events).
In this section, we show that although SSA is gener-

ally inappropriate for pure-birth memoryless models,
it is actually a correct approach for the Yule model
and the coalescent model. As these models are pure-
birth models, there will only be one period during
which n species exist, so Problem 2 does not apply.
This leaves Problems 1 and 3 that we will show cancel
each other out under the Yule model and the coales-
cent model. We speculate that the suitability of SSA for

sampling from the most widely used null models has
led to its application to other models for which it is
unsuitable.

An important aspect of memoryless models is that
evolution after the speciation event that created the nth
species (sn) is completely independent of the evolution
that occurred up to that point. Consequently, it is pos-
sible to simulate trees from these models in 2 separate
stages. First, using the model, a tree is simulated to the
speciation event that created the nth species (denoted by
sn; see Fig. 1). A length λ is then added onto the pendant
edges to produce the final tree. Due to the independence
of these 2 processes, Problems 1 and 3 do not affect the
simulation to sn and are addressed entirely by an ap-
propriate choice of λ. This raises the question from what
probability density, h(λ), the additional time λ should be
sampled.

We begin by noting that any pure-birth memoryless
model can be uniquely defined by the probability den-
sities of the intervals between speciation events. We de-
note the time between the speciation event that created
the nth and the (n + 1)th species by σn (the time between
sn and sn+1) and its probability density by gn(σn). Note
that SSA makes the assumption that

h(λ) = g(λ).

This effectively produces a tree with n species condi-
tional on the next speciation event occurring
immediately—clearly not what was intended.

A seemingly better (but still generally incorrect) ap-
proach would be to simulate the tree until sn+1 and
randomly terminate the tree between sn and sn+1 (be-
cause all trees between these 2 events should be equally

FIGURE 1. Some of the notation used throughout this paper is
illustrated in this figure where n = 5. τ is the simulated tree until
the point in time when the tree first has greater than n species. This
point in time is the speciation event creating the (n + 1)th species—
sn+1. The duration for which a simulated tree has n species is de-
noted by σn, this is the time between the creation of the nth species
(sn) and the (n + 1)th species (sn+1). The time for which an ob-
served tree has n species is necessarily less than σn and is denoted
by λ.
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likely). This addresses Problem 1 and gives us

h(λ) =
∫ σn=∞

σn=λ

h(λ|σn)gn(σn)dσn

=

∫ σn=∞

σn=λ

gn(σn)

σn
dσn.

However, this does not take into account the variable
contribution to the p(T |n) that different values of σn
should make (Problem 3).

From the definition of p(T |n), the contribution from a
simulated tree with a given σn should be proportional
to σn; therefore, the correct distribution from which to
sample λ is

h(λ) ∝
∫ σn=∞

σn=λ

σnh(λ|σn)gn(σn)dσn,

∝
∫ σn=∞

σn=λ

gn(σn)dσn. (1)

Thus, the following will produce correct samples from
p(T |n) for any pure-birth memoryless model:

Pure-birth memoryless sampling approach (PBMSA)

1. Simulate a tree terminating at sn
2. Add a distance, λ, to the pendant edges using the

correct h(λ) from Equation 1
3. Repeat from Step 1 until all samples are obtained.

For SSA to be appropriate, we require h(λ) = gn(λ).
Inspection of Equation 1 reveals that this requirement
is met if gn(σn) is an exponential distribution. Further-
more, as the model is memoryless, the parameter may
depend only on the number of species that are extant.
These conditions are clearly satisfied by the Yule model,
the coalescent model, and the related Moran (Moran
1958) and Hey models (Hey 1992).

Pure-birth memoryless sampling approach (PBMSA)
is appropriate for any model where the time between
speciation events depends only on the number of extant
species though the Yule model and the coalescent model
are the only widely used models that fit this category.
PBMSA is inappropriate for models with explicit extinc-
tion events and models with a memory.

Explicit extinction events will result in a simulated
tree that may have n species for several intervals—
PBMSA would only sample from the first of these inter-
vals resulting in a tree that is younger than expected.

Many models feature a memory, this may be in the
form of hereditary speciation rates, for example, Heard
(1996), or a dependence of speciation rates on the ab-
solute age of a tree or a species, for example, Chan
and Moore (1999). PBMSA cannot sample from such
models as the evolution before and after sn is not in-
dependent and different simulations to sn should make
different contributions to the final sample. If, for ex-
ample, speciation rate is negatively related to species

age (Agapow et al. 2004), then a tree of n old species
should remain that size longer than a tree of n young
species. Therefore, by the definition of p(T |n), a tree of
n old species should give a greater contribution to that
density than a tree of n young species. Consequently, it
is necessary to take different numbers of samples from
each of the evolutionary histories and PBMSA cannot be
used.

A General Sampling Approach

We now introduce a general sampling method that
works for a broad class of models that can include
both speciation and extinction events. Our sampling
approach simulates a tree, τ, until it is highly unlikely
that the tree will return to n species. This will occur ei-
ther when all species are extinct or when there has been
sufficient speciation such that the number of extinctions
required to return to n species is highly improbable.

The only restriction on the class of models from which
our algorithm can sample is that we must be able to
guarantee that each simulation “run” will eventually
terminate. The efficiency of the algorithm depends on
the time that is required until a simulation terminates.
An example of a model to which this algorithm cannot
be applied is one where the number of species perpetu-
ally fluctuates over a range including n.

Determining how unlikely a tree is to return to n
species depends on the model. Throughout the remain-
der of this section, we assume that we can determine a
critical number of species, n∗, from which it is unlikely
that extinctions will bring the number of species back
to n. A simulation therefore ends when the number of
species reaches 0 or n∗. The value n∗ can be obtained via
simulations.

A simulation run will have k periods during which
n species were extant, we denote the length of each of
these periods by φi, i=1, . . . , k. As previously discussed,
the probability of observing a simulated tree while it
has n species is directly proportional to the duration for
which n species existed: Φ=

∑k
i=1φi. This will vary be-

tween simulations so each simulation should make a
different contribution to the final sample—a simulated
tree where n species existed for a short period of time
should make a lower contribution to the sample than
a simulated tree where n species existed for a longer
period.

The question remains how to decide on the number of
samples to take from a given simulated tree: this should
be proportional toΦ. To take this into account, we intro-
duce a sampling rate, r, such that we will take rΦ sam-
pled trees from a given simulated tree. As we can only
take whole samples of trees, for each simulated tree, rΦ
will be randomly rounded: If rΦ is between integers k
and k + 1, it is rounded down with probability rΦ − k
and up with probability 1 − (rΦ − k). This ensures that
the randomly rounded rΦ has an expected value of rΦ.

If the sampling rate is too low, many simulations will
be required for each sampled tree and the process will
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be very inefficient. If it is too high, many sampled trees
may be derived from a single simulated tree and these
sampled trees will have a higher degree of correlation
than expected for random samples. Ideally, r should be
determined experimentally (by simulations) such that
it is as high as possible while ensuring that few sim-
ulated trees produce more than a single sample. Like
n∗, an appropriate value for r can be obtained from
simulations.

Lastly, we introduce Si(τ) as the set of trees that can be
obtained by truncating a simulated tree during the ith
interval during which it had n species. Combining these
element, we have the following sampling approach:

General sampling approach

1. Determine a suitable sampling rate, r
2. Simulate a tree, τ, until n∗ species or extinction is

reached
3. Find the expected number of trees to sample from
τ: rΦ=

∑k
i=1 rφi

4. Randomly round rΦ
5. For each sample required:

(a) Randomly choose an interval, i, according to
the weights φi

(b) Sample a tree uniformly at random from
Si(τ)

6. Repeat from Step 2 until the required number of
samples has been obtained.

Most n species trees based on real data will be a
subsample of the m species contained in the true un-
derlying tree such that m − n species are missing. This
problem is referred to as incomplete taxon sampling
(Zwickl and Hillis 2002) and may be due to several
reasons including inability to sample the species or a
species being “undiscovered.” If the number of miss-
ing species in a tree is substantial, incomplete taxon
sampling should be included explicitly. A common ap-
proach is to sample trees with m species and randomly
remove m − n species, thus producing an n species tree
as desired. For example, if only 75% of species are being
sampled and we wish to sample a tree with 30 species,
we would generate a tree with 40 species and remove
10 species uniformly at random. The problem with this
approach is that we will generally only have an estimate
of the number of missing species (25% in our example),
hence we should consider a range of possible missing
numbers of species. For instance, in the previous ex-
ample, the true tree may have somewhere between,
say, 35 and 50 species. GSA can readily be extended
to include incomplete taxon sampling as discussed in
Appendix 1.

Constant-Rate Birth–Death Approach

We have presented 2 main sampling approaches—
PBMSA and GSA. PBMSA applies only to a limited
class of evolutionary models that includes the Yule
model and the coalescent model (for which PBMSA

becomes equivalent to SSA). GSA applies to a much
wider class of models including some for which SSA
has been used inappropriately. Application of GSA to
a given model is relatively straightforward regardless
of the model’s complexity. However, the generality of
this approach makes it a mathematically unsatisfying
and relatively inefficient process (from a computational
perspective).

For the constant-rate birth–death process—an ex-
tension of the Yule model that explicitly incorporates
extinction—the joint probability density of the spe-
ciation times can be inferred analytically (Yang and
Rannala 1997). When the joint density of speciation
events for a given model is known, a Markov chain
Monte Carlo approach can be used to sample trees from
this density.

However, in further work on the constant-rate birth–
death process, we inferred the probability density for
the time of individual speciation events explicitly
(Gernhard 2008). In Appendix 2, we show how these
densities can be used to sample trees from this model
with the constant-rate BDSA—this is the most efficient
way to sample trees from a constant-rate birth–death
model of which we are aware. The BDSA for simulating
trees on n species only requires to sample n times from
one-dimensional distributions.

COMPARISON OF THE SAMPLING APPROACHES

We have shown that SSA is only appropriate for
models without extinction where the time between
speciation events is exponentially distributed with a
rate parameter that depends only on the number of
species that are extant. The 2 most popular models—the
Yule and coalescent—satisfy these conditions, and it is
appropriate to sample from them using SSA.

Existing approaches (such as SSA) are conceptu-
ally and computationally simpler than those intro-
duced in this paper, they have also been applied to
many situations in existing studies for which they are
inappropriate. It is therefore important to consider how
significantly the samples produced by the approaches
differ. In situations where the difference is minimal,
it may be appropriate to use the simpler existing ap-
proaches to produce an approximate sample. If the
difference is great, it will be necessary to use more com-
plicated approaches such as those presented here.

In this section, we investigate the differences result-
ing from the different simulation approaches. Note that
throughout this section, we have disregarded the root
edge length. We therefore define the age of a sampled
tree as the distance between the speciation event that
created the second species and the leaves. This corre-
sponds to realistic situations where there it is often dif-
ficult to determine the length of the root edge.

Constant-Rate Birth–Death Model

We begin by comparing SSA and GSA using a
constant-rate birth–death model—a simple extension
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of the Yule model that explicitly includes extinction—
each species has the same probability per unit time of
becoming extinct. The constant-rate birth–death model
includes 2 parameters—the speciation rate and the ex-
tinction rate—for our analysis, it is sufficient to consider
the ratio of these, hence we set the speciation rate to
1. If the extinction rate is 0, the model is equivalent to
the Yule model. By increasing the extinction rate from
0 to 1, the model becomes increasingly different from
the Yule model and SSA should become increasingly
inappropriate.

Figure 2 shows the expected age of the tree as a
function of the extinction rate for samples of 10,000
trees produced by both sampling algorithms. When
the extinction rate is 0, the model is equivalent to the
Yule model and provides the same sample of specia-
tion times. As the extinction rate increases, the age of
the trees increases for 2 reasons: First, increasing the
extinction rates effectively reduces the net speciation
rate (speciation rate minus extinction rate), resulting
in older trees—this effect is correctly incorporated by
SSA as well as GSA. Second, tree age increases with a
nonzero extinction rate, as we may return to n species
from any tree on more than n species. The SSA should
not be applied to models with a nonzero extinction rate
because SSA only considers the first period when n
species are present. The probability of returning from
a larger number of species back to n species increases
with increasing extinction rate; in fact, this probabil-
ity is 1 in the extreme case, where the speciation and

FIGURE 2. This figure shows the expected age for 20 species
trees sampled from the constant-rate birth–death model as a func-
tion of the extinction rate. The speciation rate was set to 1, and
5000 trees were sampled for each extinction rate using SSA (dot-
ted line) and GSA (solid line). The age of the trees sampled by
GSA increases as the extinction rate increases—this is because SSA
only considers the first time period during which n species ex-
isted, hence trees sampled using SSA do not exhibit the same age
increase.

extinction rates are equal (as it is certain that the tree
will eventually become extinct under that model). Fig-
ure 2 shows that the problem of returning multiple
times to a tree on n species becomes severe for an
extinction rate of more than 0.6 times the speciation
rate.

The correct simulation of the absolute times in a tree
becomes important in studies where the absolute rates
(e.g., millions of years) can be estimated for the data.
Such an estimation is possible when fossil data are avail-
able (see, e.g., the paleontological studies Stanley et al.
1981; Raup 1991; Patzkowsky 1995; Przeworski and Wall
1998).

We have shown that the absolute age of the tree differs
for the 2 sampling approaches; however, in some situa-
tions, the relative timing of the speciation events may be
all that matters. To investigate this feature, we consider
lineage through time (LTT) plots which show the num-
ber of species present as a function of the age of the tree.
When the number of species is log transformed, the LTT
plot should show a straight line with a deviation near
the present (Harvey et al. 1994; Nee et al. 1994). Figure 3a
shows the expectation of the LTT plot for an extinction
rate of 0.95 from a sample of 10,000 trees produced us-
ing the 2 algorithms. There is a clear difference between
GSA and SSA.

The slope near the origin (i.e., on the left) of a log-
transformed LTT plot can be used to give an estimate
of the net speciation rate. In Figure 3b, we consider
the difference between this slope for the 2 methods as
a function of the extinction rate. Interestingly, around
an extinction rate of 0.9, the bias switches from nega-
tive to positive. This can be explained in the following
way.

Under SSA, simulations stop at the first time when
n species are reached. Because simulations under GSA
can reach n species multiple times, simulations run
longer and trees are older. When extinction rate is
low, only recent speciation events disappear, but ma-
jor clades survive. So the LTT plot shows no differ-
ence for SSA and GSA at the beginning, but toward
the present, the GSA plot becomes flatter compared
with the SSA plot. Therefore, when time is normalized,
the slope near the origin is steeper under GSA than
under SSA. As extinction rates increase, the number
of older clades that go extinct increases due to much
longer simulation run times, so the slope near the origin
becomes smaller and smaller when using GSA as op-
posed to SSA, which eventually yields a change in slope
bias.

Average extinction rates are generally found close
to speciation rates (on the order of 0.9 or more, see,
e.g., Alroy 1996, 2008), and this is a common setting for
tree simulations (see, e.g., Magallón and Sanderson
2001; Ricklefs 2003). At this value, the 2 sampling
approaches differ significantly in the estimated age
of the tree. For the relative timing of speciation
events, the result is not as clear, the severity (and di-
rection) of the bias depends strongly on the extinction
rate.
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FIGURE 3. a) An expected LTT plot is shown here for 5000, 20-species trees sampled from a constant-rate birth–death model using both
SSA and GSA. The speciation rate was set to 1 and the extinction rate to 0.95. The trees have been rescaled to have age 1—this removes the
effect seen in Figure 2 and permits us to explore the relative speciation times of both samples. b) The initial slope in (a) gives an estimate of the
net speciation rate. Here, we depict the percentage deviation of the slope obtained using SSA to that obtained with GSA for differing relative
extinction rates. The point corresponding to (a) is marked.

Tree Shapes

The shape or topology of a tree is the structure ob-
tained by disregarding the timing of speciation events
(or equivalently the edge lengths). All memoryless mod-
els (including the constant-rate birth–death model) pro-
duce trees with the same tree shape distribution. The
reason for this is that there is nothing to differenti-
ate between species, hence, regardless of the model,
each species is always equally likely to be the one that
undergoes the next speciation or extinction event. Fur-
thermore, because SSA does not distinguish between
species, it correctly samples the tree shape distribution
for memoryless models.

SSA may incorrectly sample the tree shape distribu-
tion from models that feature a memory. For pure birth
models, the mechanism behind this would require a cor-
relation between the shape of a tree and the duration for
which n species exist. This correlation is not explicit in
any common models of which we are aware but may
exist implicitly; the strength of the correlation will de-
termine the suitability of SSA to sample from a given
model. We investigated 2 of the more common models
with a memory (Heard 1996; Blum and Francois 2006)
and found minimal bias in the tree shape distribution
produced by SSA.

For other models, SSA may introduce a more serious
bias in the tree shape distribution. One of the most obvi-
ous cases is a model with extinction where the tree shape
distribution changes over time—as we have seen SSA
produces trees that are too young, hence, the tree shape
distribution would be sampled too early.

Incomplete Taxon Sampling

Let n be the number of sampled species in a tree. The
most common approach for incomplete taxon sampling

first samples a tree containing the expected true number
of species, m, and then randomly deletes m − n of these
species. In Appendix 1, we provide an extension to GSA
that considers a range of possible true tree sizes and
samples these accordingly. We applied this method to
the constant-rate birth–death model and found that the
sampled trees differed negligibly from those obtained
using the conventional approach. There are 2 main is-
sues with the conventional approach; in this section,
we illustrate why each issue results in only a negligible
bias.

Issue 1: Consider the constant-rate birth–death model.
Figure 4 shows how the expected age of a 10-species tree
suffering from incomplete taxon sampling increases as a
function of the true tree size. It is important to note that
this is near-linear; in Stadler (2008), it is shown that for
the constant-rate birth–death model the relationship is
linear when the extinction rate is 1 and becomes slightly
nonlinear as the extinction rate is decreased. If this re-
lationship were perfectly linear and the true number
of species were known, sampling a tree with m species
and deleting m − n species would give a correct sam-
ple. For this model, the deviation from linearity seems
sufficiently small to be irrelevant for most purposes.

Issue 2: Given a probability of sampling each species
(s), a naive method for calculating the expected num-
ber of species would be m = n/s. In Figure 4, we show
the distribution of the true tree size as calculated using
Equation A.4 for s = 0.7, due to the asymmetry of this
distribution, its expectation exceeds n/s. In this exam-
ple, the difference between these expectations is about
0.5; this will result in a small bias toward younger trees.

For the constant-rate birth–death model, the bias in-
troduced by using a simplistic incomplete sampling
method is insignificant in contrast with uncertainty re-
garding the true number of species. For other models, it
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FIGURE 4. Top panel: The black circles show the expected age of
a 10 -species tree that has been sampled by constructing an m species
tree and deleting m−10 species. Five thousand samples were taken for
each value of m using the constant-rate birth–death model with speci-
ation rate 1 and extinction rate 0.9. The gray crosses show the expected
time of the speciation events in the same situation. The lines are linear
least squares fits to these points, demonstrating that the relationships
are near-linear. The bottom panel shows the probability distribution
of the true tree size, m, as calculated from Equation A.4 for a sampling
probability of s = 0.7. Also depicted are the expectation of this distri-
bution (about 14.8) and a simple estimate of this—n/s (about 14.3).

may be necessary to use the approach outlined in Ap-
pendix 1. This will particularly be the case for models
that exhibit a strong nonlinearity in the expected age
curve shown in Figure 4.

REANALYSIS OF PUBLISHED STUDIES WITH THE GSA
MODEL

Lastly, we investigated if and how the use of inap-
propriate sampling methods influences conclusions in
data analysis. We redid the analysis in Purvis (2004),
a response paper to Ricklefs (2004). The 2 papers dis-
cuss if tree age and/or the number of species correlates
with the variance of a trait in extant species. Two mod-
els of trait evolution are considered: gradual and punc-
tuational evolution. Gradual trait evolution means that
a trait changes continuously over time according to a
Brownian motion. Punctuational trait evolution means
that a trait only changes at a speciation event with the
changes being normally distributed.

Ricklefs claimed that under the gradual trait evo-
lution model, trait variance correlates with tree age,
whereas under the punctuational trait evolution model,
trait variance correlates with the logarithm of species
number. Using this hypothesis, Ricklefs found that mor-
phological evolution in birds is punctuational.

Purvis argued this result by simulating trees under
the birth–death process: 1) with a fixed age and 2) with
a fixed number of species. He then evolved the trait

under both the gradual and the punctuational model
and looked for correlations with the Pearson test.

Using the simulation results, Purvis showed for case
(1) a strong correlation between the logarithm of species
number and trait variance, under both the gradual and
the punctuational trait evolution model. The simulation
of birth–death trees under case (1) is straightforward:
a tree is simulated until a certain age is reached. We
will therefore discuss only case (2) further. For case
(2), Purvis found a weak correlation between the tree
age and trait variance, under both the gradual and
the punctuational trait evolution model. He evolved
100 trees on 50 extant species using SSA (speciation
rate 0.20, extinction rate 0.16). Then a Pearson test
was performed in order to determine any correlation
between the trait variance of the extant species and
tree age. Under gradual trait evolution, he obtained
t98 = 2.03,P = 0.046, and r2 = 0.03 and under punctua-
tional trait evolution t98 = 2.32,P = 0.02, and r2 = 0.04.
As the model had a nonzero extinction rate, the trees
should have been sampled using an approach such as
GSA instead of SSA. We reanalyzed these data using the
GSA model to see whether the correlations inferred by
Purvis were confirmed when using a more appropriate
model.

First, we realized that the trait evolution simulations
have a considerable variance. We therefore simulated
100 trees using SSA and GSA and then did Purvis’s trait
evolution analysis 20 times, that is, we simulated the
trait 20 times for each tree. We then calculated the mean
and standard deviation of the 20 values t98,P, and r2.

Using SSA for simulating the trees, under gradual
trait evolution, we obtain t98=1.92±0.94,P=0.16±0.21,
and r2=0.04±0.03 and under punctuational trait evolu-
tion t98= 1.47± 0.98,P= 0.20± 0.19, and r2= 0.03± 0.03.
For the individual values, see Table 1.

Then, using our GSA for simulating the trees, under
gradual trait evolution, we obtain t98 = 3.07 ± 0.94,P =
0.02±0.03, and r2=0.09±0.05 and under punctuational
trait evolution t98 = 2.32± 1.45,P= 0.19± 0.33, and r2 =
0.07± 0.05. For the individual values, see Table 2.

There are 2 major conclusions from these simula-
tions. First, there is high variance in the results of trait
simulations on any one tree, as one would expect for
these stochastic processes: some of our SSA runs are
very similar to Purvis’s, but the average results are not,
see Table 1. Second, we found no overall correlation
under SSA between tree age and trait variance under
either the gradual or the punctuational trait evolution
model. However, using the correct GSA, we find no
correlation between tree age and trait variance under
the punctuational trait evolution model, but we do find
a weak correlation under the gradual trait evolution
model. Note that Ricklefs (2004) suggested that such a
correlation should only hold under the punctuational
trait evolution model, whereas Purvis (2004) reported a
correlation for both (implying that the data cannot be
used to test for distinguish these models of trait evo-
lution). Taken together, this suggests that more careful
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TABLE 1. Using the SSA trees, we simulated 20 times a gradual
evolving trait (g) as well as a punctual evolving trait (p)

Simulation t98, g P, g r2, g t98, p P, p r2, p
1 3.9309 0.0002 0.1362 0.9635 0.3377 0.0094
2 2.1835 0.0314 0.0464 3.8673 0.0002 0.1324
3 0.4033 0.6876 0.0017 1.6738 0.0974 0.0278
4 2.3020 0.0235 0.0513 1.5643 0.1210 0.0244
5 1.2827 0.2026 0.0165 1.6476 0.1026 0.0270
6 2.6989 0.0082 0.0692 2.6249 0.0101 0.0657
7 2.9981 0.0034 0.0840 0.9679 0.3355 0.0095
8 1.2641 0.2092 0.0160 2.0306 0.0450 0.0404
9 0.9015 0.3695 0.0082 0.7662 0.4454 0.0060

10 1.0374 0.3021 0.0109 1.7590 0.0817 0.0306
11 2.1176 0.0367 0.0438 −0.9682 0.3353 0.0095
12 2.1256 0.0361 0.0441 0.7035 0.4834 0.0050
13 3.0446 0.0030 0.0864 1.4626 0.1468 0.0214
14 1.5038 0.1359 0.0226 2.4407 0.0165 0.0573
15 0.4809 0.6316 0.0024 2.2495 0.0267 0.0491
16 2.7056 0.0080 0.0695 1.6299 0.1063 0.0264
17 2.6804 0.0086 0.0683 0.5717 0.5689 0.0033
18 2.0277 0.0453 0.0403 0.6506 0.5168 0.0043
19 1.0014 0.3191 0.0101 1.3566 0.1780 0.0184
20 1.7940 0.0759 0.0318 1.5209 0.1315 0.0231

Mean 1.9242 0.1569 0.0430 1.4741 0.2043 0.0295
Standard 0.9358 0.2083 0.0348 0.9778 0.1854 0.0300
deviation

TABLE 2. Using the GSA trees, we simulated 20 times a gradual
evolving trait (g) as well as a punctual evolving trait (p)

Simulation t98, g P, g r2, g t98, p P, p r2, p
1 3.5009 0.0007 0.1112 0.6701 0.5044 0.0046
2 4.3062 0.0000 0.1591 3.3604 0.0011 0.1033
3 2.6522 0.0093 0.0670 2.6732 0.0088 0.0680
4 4.5924 0.0000 0.1771 2.4367 0.0166 0.0571
5 2.2197 0.0288 0.0479 4.1838 0.0001 0.1515
6 3.5131 0.0007 0.1119 2.3722 0.0196 0.0543
7 3.5539 0.0006 0.1142 0.4154 0.6788 0.0018
8 2.2403 0.0273 0.0487 3.1152 0.0024 0.0901
9 4.8480 0.0000 0.1934 4.9537 0.0000 0.2003

10 3.4050 0.0010 0.1058 3.0170 0.0033 0.0850
11 3.0104 0.0033 0.0846 2.5407 0.0126 0.0618
12 1.5544 0.1233 0.0241 3.3926 0.0010 0.1051
13 1.9690 0.0518 0.0381 −0.0532 0.9577 0.0000
14 3.7756 0.0003 0.1270 4.1254 0.0001 0.1480
15 2.6184 0.0102 0.0654 2.5801 0.0114 0.0636
16 4.0335 0.0001 0.1424 2.3012 0.0235 0.0513
17 2.0592 0.0421 0.0415 2.2018 0.0300 0.0471
18 2.4036 0.0181 0.0557 −0.2872 0.7746 0.0008
19 2.0635 0.0417 0.0416 2.0397 0.0441 0.0407
20 2.9868 0.0036 0.0834 0.3439 0.7316 0.0012

Mean 3.0653 0.0181 0.0920 2.3191 0.1911 0.0668
Standard 0.9445 0.0299 0.0494 1.4520 0.3278 0.0553
deviation

simulations using the proper GSA will be required to
discern if and how one can use clade age, size, and trait
variance to distinguish between gradual and punctua-
tional trait evolution.

CONCLUDING COMMENTS

When exploring evolutionary models, analytical re-
sults are preferable to simulations because of the re-
duced computational burden and greater insight they
provide. However, analytical results may be difficult to
obtain and simulation studies may answer questions
more quickly—once a result has been confirmed by sim-
ulation studies, an analytical approach can be pursued
with greater confidence.

Simulation studies have an inherent danger—it is
extremely easy to simulate trees using a given model,
however understanding what distribution these trees
come from can be difficult. This makes it easy to pro-
ceed with a (possibly incorrect) method and therefore
sample trees. This is particularly problematic with more
complicated evolutionary models where seemingly in-
tuitive methods of simulating trees (such as SSA) often
sample from undesirable and unrealistic probability
distributions.

We have shown that a commonly used sampling ap-
proach (SSA) is appropriate for 2 of the most common
evolutionary models—the Yule model and coalescent
model. However, this approach is inappropriate for
many other models to which it has been applied. We de-
veloped an appropriate GSA and considered the biases
introduced when SSA is used instead of an appropriate
approach such as GSA. For the constant-rate birth–
death model, SSA produces a strong bias in the age of
the tree and the relative timing of speciation events. It
does not produce a bias in the tree shape distribution.
Furthermore, for the constant-rate birth–death model,
using GSA with the common approach for incorpo-
rating incomplete taxon sampling seems adequate for
most applications. More complex models with certain
characteristics as discussed in this paper may result in
stronger biases of any of these attributes of a sampled
tree.

Finally, we have shown that using SSA rather than
GSA leads to qualitatively different conclusions: By sim-
ulating traits under a gradual trait evolution model on
simulated birth–death trees, we find no correlation be-
tween trait variance and tree age using SSA, whereas
we find a weak correlation using GSA. We suggest that
many analyses based on SSA may need to be reanalyzed
with the more appropriate GSA.

The methods presented here have been implemented
in a Perl package, including a user friendly GUI (Hart-
mann 2010), and in an R package, TreeSim (Stadler
2010). This software has built-in support for the Yule
model and constant-rate birth–death models and is
easily extendable to permit sampling from additional
models. We hope that this paper helps clarify some of
the issues about sampling trees from evolutionary mod-
els and that the software we have created will be of use
for future simulation studies.
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APPENDIX 1: EXTENSION OF GSA TO INCOMPLETE
TAXON SAMPLING

Here, we extend GSA to explicitly take into account
incomplete taxon sampling. This extension of GSA re-
quires either an estimate of the probability, s, of any
given species being sampled or, alternatively, the prob-
ability distribution of the size of the true tree, m, given
the number of sampled species, n. Without one of these
quantities, our method cannot be applied, and indeed, it
is difficult to see how to proceed otherwise. Our method
also assumes that sampled species are uniformly at
random distributed through the tree. It is relatively
straightforward to relax this last assumption although
we do not present the details here. One instance where
this would be necessary is if the probability of sampling
any 2 species is positively correlated to their proximity
in the phylogenetic tree (as might be the case if whole
clades are likely to be missed or thoroughly sampled).

Given the sampling probability s, for a given real
tree size, m, the number of sampled species, n, will be
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distributed according to a binomial distribution:

p(n|m) =

(
m
n

)

sn(1− s)m−n. (A.1)

However, the number of sampled species, n, is the size
of the final tree and is what we wish to condition on;
thus, Bayes’ law gives us

p(m|n) ∝ p(n|m)p(m), (A.2)

where p(m) is the probability of a tree having m leaves
and p(n|m) is the probability of sampling n of those
leaves. For m ≥ n, it is always possible to obtain n
leaves from a tree with m leaves, however the probabil-
ity of this occurring decreases with m such that p(n|m)
becomes small enough to make p(m|n) negligible. This
permits us to restrict the range of m that must be exam-
ined to n ≤ m ≤ m∗, where m∗ is a limit that needs to
be established. If we assume that p(m) does not increase
with m, an appropriate condition to solve for m∗ is

p(n|m∗) ≤
m∗−1∑

m=n

p(n|m)
N
, (A.3)

where N is the number of trees that are being sampled.
This condition ensures that the first value of m being ex-
cluded is expected to contribute less than 1 tree to the
final sample. If p(m) increases with m, extra analysis will
be required to find an appropriate m∗ (e.g., using simu-
lation studies).

Given a particular simulated tree, we have p(m) ∝ Φm
(the duration for which a simulated tree had m species),
hence substitution in Equation A.2 gives

p(m|n) ∝ Φm

(
m
n

)

sn(1− s)m−n, (A.4)

which is readily normalized to give p(m|n). The ex-
pected contribution to the sample from a given simu-
lated tree consists of the expected contribution for each
value of m:

r
m∗∑

m=n

Φmp(m|n). (A.5)

When a tree is simulated, the expected contribution to
the sample is found and a sample of the corresponding
size is taken. This process is repeated until the sample
has the desired size.

GSA with incomplete taxon sampling

1. Find m∗ analytically or by simulation/investiga-
tion (e.g., Equation A.3)

2. Simulate a tree τ until m∗ species are reached or all
species become extinct

3. Calculate p(m|n) for all m for this simulated tree
(Equation A.4)

4. Find the expected number of samples to take from
τ (Equation A.5)

5. Randomly round the expected number of samples
6. For each sample:

(a) Randomly choose the original tree size m̂ ac-
cording to p(m|n)

(b) Uniformly at random choose a time when τ
had m̂ species

(c) Randomly delete m̂− n species

7. Repeat from Step 2 until all samples have been ob-
tained.

APPENDIX 2: EFFICIENT SAMPLING FROM THE
CONSTANT-RATE BIRTH–DEATH MODEL

In this section, we present an efficient algorithm for
sampling trees with n species from the constant-rate
birth–death model. The constant-rate birth–death model
is a popular null model for detecting variation in diver-
sification rates (Mooers and Heard 1997; Pybus and
Harvey 2000; Chan and Moore 2002). It is an extension
of the Yule model where all species have a constant rate
of speciation, β, and a constant rate of extinction, μ,
with the constraint that β ≥ μ.

The method we propose relies on representing a bi-
nary tree as a point process, this is illustrated in Figure 5.
Generally, a binary tree with n extant species can be
described by n − 1 points in the following way. On a
horizontal axis, locate the leaves (species) uniformly at
random at 1, 2, . . . n. The n−1 speciation times are repre-
sented by n−1 points with (x, y) coordinates (j + 1/2, sj),
j= 1, 2, . . . , n ; sj > 0. The tree is obtained by an iterative
procedure. At each step of the iteration, the most recent
speciation event is connected with the 2 neighboring
leaves. This speciation event is regarded as a new leaf
and replaces the 2 neighboring leaves. This is repeated
until all speciation points are connected.

In Gernhard (2008), it is shown that the times si of
the speciation events in a constructed tree under the
constant-rate birth–death model are independent and
identically distributed. For β > μ, we have the distribu-
tion function

F(s|t,β,μ, n) =
1− e−(β−μ)s

β− μ e−(β−μ)s
β− μ e−(β−μ)t

1− e−(β−μ)t
,

where t is the time of origin of the tree. The inverse of
F(s|t,β,μ, n) is

F−1(s|t,β,μ, n)

=
1

β− μ
ln

(
β− μ e−(β−μ)t − μ(1− e−(β−μ)t)s
β− μ e−(β−μ)t − β(1− e−(β−μ)t)s

)

.

Recall that throughout this paper, we assume a uni-
form prior for the time of origin of a tree. For this ap-
proach, we need the probability density of the time of
origin of the tree, t, conditional on it having n species at
the present. This distribution was derived in Gernhard
(2008) for β > μ:

Q(t|β,μ, n) =

(
β(1− e−(β−μ)t)
β− μ e−(β−μ)t

)n

.
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FIGURE 5. On the left, a tree on 5 species—A, B, C, D, and E—is displayed. Time is set 0 at the time of the leaves and increasing into the
past. The time tor is the origin of the tree. On the right, we have the corresponding point process representation. For simulating trees under
the constant-rate birth–death process, first the times si and tor are sampled. Then the point process is transformed into a tree as described in
Appendix 2, and the species are assigned uniformly at random to {1, 2, . . . , n}.

The inverse of Q is

Q−1(t|β,μ, n) =
1

β− μ
ln

(
1− μ

β
t1/n

1− t1/n

)

.

For β=μ, the functions F(s|t,β,β, n) and Q(t|β,β, n) are
established in Aldous and Popovic (2005):

F(s|t,β,β, n) =
s

1 + βs
1 + βt

t
,

F−1(s|t,β,β, n) =
st

1 + βt(1− s)
,

Q(t|β,β, n) =

(
βt

1 + βt

)n

,

Q−1(t|β,β, n) =
1

β(t−1/n − 1)
.

Combining these probability densities and the point
process representation, we obtain the following algo-
rithm:

Constant-rate BDSA

1. Sample r0, . . . , rn−1 uniformly at random from [0, 1]
2. Calculate the age of the tree, t=Q−1(r0|β,μ, n)
3. Calculate the n−1 branching times, si=F−1(ri|t,β,
μ, n), i= 1, . . . , n− 1

4. Construct the tree from the point process represen-
tation

5. Repeat from Step 1 until all samples have been
obtained.

The advantage of this method over GSA is that it is un-
necessary to determine n∗ and r. The disadvantage of
this method is that it gives no information about extinct
lineages (regardless of the value of μ). If this information
is required, GSA must be used for sampling constant-
rate birth–death models. Finally, note that a sample from
the Yule model can be obtained by setting μ= 0.


