74 research outputs found

    Interpolation et méthodes à haute résolution pour antennes non uniformes

    No full text
    Le travail présenté dans ce papier se rapporte à l'application et le développement de méthodes de localisation de sources pour les antennes non uniformes. Il s'agit en particulier de l'adaptation des méthodes à haute résolution pour les Antennes Linéaires Non Uniformes (ALNU) afin de réaliser l'estimation de direction d'arrivée. Pour se faire une méthode d'interpolation spatiale est mise en oeuvre. L'objet de ce papier est de comparer les performances de ces différentes méthodes et d'évaluer la sensibilité des méthodes au choix des paramÚtres de l'interpolateur

    An Improved Wavelet‐Based Multivariable Fault Detection Scheme

    Get PDF
    Data observed from environmental and engineering processes are usually noisy and correlated in time, which makes the fault detection more difficult as the presence of noise degrades fault detection quality. Multiscale representation of data using wavelets is a powerful feature extraction tool that is well suited to denoising and decorrelating time series data. In this chapter, we combine the advantages of multiscale partial least squares (MSPLSs) modeling with those of the univariate EWMA (exponentially weighted moving average) monitoring chart, which results in an improved fault detection system, especially for detecting small faults in highly correlated, multivariate data. Toward this end, we applied EWMA chart to the output residuals obtained from MSPLS model. It is shown through simulated distillation column data the significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional partial least square (PLS)‐based Q and EWMA methods and MSPLS‐based Q method

    Forecasting of Photovoltaic Solar Power Production Using LSTM Approach

    Get PDF
    Solar-based energy is becoming one of the most promising sources for producing power for residential, commercial, and industrial applications. Energy production based on solar photovoltaic (PV) systems has gained much attention from researchers and practitioners recently due to its desirable characteristics. However, the main difficulty in solar energy production is the volatility intermittent of photovoltaic system power generation, which is mainly due to weather conditions. For the large-scale solar farms, the power imbalance of the photovoltaic system may cause a significant loss in their economical profit. Accurate forecasting of the power output of PV systems in a short term is of great importance for daily/hourly efficient management of power grid production, delivery, and storage, as well as for decision-making on the energy market. The aim of this chapter is to provide reliable short-term forecasting of power generation of PV solar systems. Specifically, this chapter presents a long short-term memory (LSTM)-based deep learning approach for forecasting power generation of a PV system. This is motivated by the desirable features of LSTM to describe dependencies in time series data. The performance of the algorithm is evaluated using data from a 9 MWp grid-connected plant. Results show promising power forecasting results of LSTM

    Statistical fault detection in photovoltaic systems

    Get PDF
    Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array’s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.Peer ReviewedPostprint (author's final draft

    Ozone measurements monitoring using data-based approach

    Get PDF
    The complexity of ozone (O 3 ) formation mechanisms in the troposphere makes the fast and accurate modeling of ozone very challenging. In the absence of a process model, principal component analysis (PCA) has been extensively used as a data-based monitoring technique for highly correlated process variables; however, conventional PCA-based detection indices often fail to detect small or moderate anomalies. In this work, we propose an innovative method for detecting small anomalies in highly correlated multivariate data. The developed method combines the multivariate exponentially weighted moving average (MEWMA) monitoring scheme with PCA modeling in order to enhance anomaly detection performance. Such a choice is mainly motivated by the greater ability of the MEWMA monitoring scheme to detect small changes in the process mean. The proposed PCA-based MEWMA monitoring scheme is successfully applied to ozone measurements data collected from Upper Normandy region, France, via the network of air quality monitoring stations. The detection results of the proposed method are compared to that declared by Air Normand air monitoring association

    A semi-supervised anomaly detection strategy for drunk driving detection: a feasibility study

    Get PDF
    Drunk driving poses a significant threat to road safety, necessitating effective detection methods to enhance preventive measures and ensure the well-being of road users. Recognizing the critical importance of identifying drunk driving incidents for public safety, this paper introduces an effective semi-supervised anomaly detection strategy. The proposed strategy integrates three key elements: Independent Component Analysis (ICA), Kantorovitch distance (KD), and double Exponentially Weighted Moving Average (DEWMA). ICA is used to handle non-gaussian and multivariate data, while KD is used to measure the dissimilarity between normal and abnormal events based on ICA features. The DEWMA is applied to KD charting statistics to detect changes in data and uses a nonparametric threshold to improve sensitivity. The primary advantage of this approach is its ability to perform anomaly detection without requiring labeled data. The study also used XGBoost for the later calculation of the SHAP (SHapley Additive exPlanations) values to identify the most important variables for detecting drunk driving behavior. The approach was evaluated using publicly available data from gas and temperature sensors, as well as digital cameras. The results showed that the proposed approach achieved an F1-score of 98% in detecting the driver’s drunk status, outperforming conventional PCA-based and ICA-based methods

    Seasonal ARMA-based SPC charts for anomaly detection: Application to emergency department systems

    Get PDF
    Monitoring complex production systems is primordial to ensure management, reliability and safety as well as maintaining the desired product quality. Early detection of emergent abnormal behaviour in monitored systems allows pre-emptive action to prevent more serious consequences, to improve system operations and to reduce manufacturing and/or service costs. This study reports the design of a new methodology for the detection of abnormal situations based on the integration of time-series analysis models and statistical process control (SPC) tools for the joint development of a monitoring system to help supervising of the behaviour of emergency department services (EDs). The monitoring system developed is able to provide early alerts in the event of abnormal situations. The seasonal autoregressive moving average (SARMA)-based exponentially weighted moving average (EWMA) anomaly detection scheme proposed was successfully applied to the practical data collected from the database of the paediatric emergency department (PED) at Lille regional hospital centre, France. The method developed utilizes SARMA as a modelling framework and EWMA for anomaly detection. The EWMA control chart is applied to the uncorrelated residuals obtained from the SARMA model. The detection results of the EWMA chart are compared with two other commonly applied residual-based tests: a Shewhart individuals chart and a Cumulative Sum (CUSUM) control chart

    Statistical monitoring of linear antenna arrays

    Get PDF
    AbstractThe paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from the desired design performance specifications can resulted. In this paper, the detection of faults is addressed from a statistical point of view as a fault detection problem. Specifically, a statistical method rested on the GLR principle is used to detect potential faults in linear arrays. To assess the strength of the GLR-based monitoring scheme, three case studies involving different types of faults were performed. Simulation results clearly shown the effectiveness of the GLR-based fault-detection method to monitor the performance of linear antenna arrays
    • 

    corecore