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A b s t r a c t 12 

Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even 13 
serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative 14 
to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based 15 
fault-detection approach for early detection of shading of PV modules and faults on the direct 16 
current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity 17 
of a one-diode model with the extended capacity of an exponentially weighted moving average 18 
(EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is 19 
easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array’s 20 
maximum power coordinates of current, voltage and power using measured temperatures and 21 
irradiances. Residuals, which capture the difference between the measurements and the 22 
predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA 23 
monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to 24 
detect and identify the type of fault. Actual data from the grid-connected PV system installed at 25 
the Renewable Energy Development Center, Algeria, are used to assess the performance of the 26 
proposed approach. Results show that the proposed approach successfully monitors the DC side of 27 
PV systems and detects temporary shading. 28 

1. Introduction 29 

1.1. The state of the art 30 

Traditional sources of energy, such as oil, coal and nuclear energy, have negative effects on human 31 
health, biodiversity, ecosystems and climate change. Nonetheless, industrial growth has 32 
extensively increased global consumption of fossil fuels, and the concomitant impacts on human 33 
health and the environment (Johansson, 1993). Renewable energy sources such as solar, wind and 34 



biomass, are promising alternatives to conventional fossil fuels because they are clean, 35 
sustainable, safe, and environment-friendly with zero CO2 emissions (Panwar et al., 2011). One of 36 
the most sustainable and economically competitive renewable energy sources is solar photovoltaic 37 
(PV) energy (Zhao et al., 2015). Moreover, solar PV energy increases a country’s energy security by 38 
reducing dependence on fossil fuels. 39 

Under practical conditions, faults are unavoidable in PV systems, particularly on the direct current 40 
(DC) side where open circuit faults, short circuits faults, hotspot faults, and total and partial 41 
shading faults are possible (Chouder and Silvestre, 2010; Hachana et al., 2016; Silvestre et al., 42 
2015; Yahyaoui and Segatto, 2017). Faults on the DC side of PV systems can result in energy loss, 43 
system shutdown and even in serious safety breaches (Brooks, 2011; Alam et al., 2015). For 44 
example, two PV facilities in the US (a 383 KWp PV array in Bakersfield, CA and a 1.208 MWp 45 
power plant in Mount Holly, NC) burned in 2009 and 2011, respectively (Brooks, 2011). The source 46 
for these accidents was a fault on the DC side that was not identified early (Vergura et al., 2009; 47 
Hariharan et al., 2016). If such faults in PV systems are not detected promptly, they can affect the 48 
system’s efficiency and profitability, as well as the health and safety of workers and community 49 
members. 50 

The detection of faults in PV systems is therefore crucial for maintaining normal operations by 51 
providing early fault warnings. Indeed, accurate and early detection of faults in a PV system is 52 
critical to avoid the progression of faults and to reduce considerably productivity losses. 53 

Several fault detection techniques for PV systems have been developed. They are two main types 54 
of these techniques: process history-based approaches and model-based approaches. 55 
Processhistory- based methods use implicit empirical models derived from analysis of available 56 
data and rely on computational intelligence 57 

and machine learning methods (Mekki et al., 2016; Shrikhande et al., 2016; Hare et al., 2016; 58 
Suganthi et al., 2015; Silvestre et al., 2014; Tadj et al., 2014; Zhao et al., 2013). Mekki et al. (2016) 59 
proposed an artificial neural network to evaluate PV system performance under partial shading 60 
conditions. Chine et al. (2016) used an artificial neural network to detect short circuits in PV 61 
arrays. Tadj et al. (2014) proposed a fault-detection approach based on fuzzy logic to detect 62 
possible solar panel abnormalities. 63 

Pavan et al. (2013) used a Bayesian neural network and polynomial regression to predict the effect 64 
of soiling in large-scale PV system. However, process-history-based methods require the 65 
availability of a relevant dataset that describes both healthy and faulty operating conditions in a 66 
PV system. 67 

On the other hand, model-based approaches compare analytically computed outputs with 68 
measured values and signal an alarm when large differences are detected (Harrou et al., 2014). 69 
Several model-based approaches to fault detection in PV systems have been reported in the 70 
literature using the one-diode model (Chouder and Silvestre, 2010; Vergura et al., 2009; Chouder 71 
and Silvestre, 2009; Chao et al., 2008). In one-diode-based fault detection approaches, model 72 



parameters are determined by parameter extraction methods from weather conditions and the 73 
datasheet from the PV module manufacturer (Garoudja et al., 2015; Abou et al., 2015; Chouder 74 
and Silvestre, 2010). Both irradiance and solar panel temperature measurements are needed for 75 
such approaches to predict the maximum power point (MPP) of the PV system. Kang et al. (2012) 76 
used a Kalman filter to predict the power output of a PV system. Johnson et al. (2011) used a 77 
Fourier series to detect arc faults in a PV system. Other approaches employed sophisticated tools, 78 
such as time-domain reflectometry (TDR) (Munoz et al.,2011) and thermoreflectance imaging (TR) 79 
(Hu et al., 2014). The TR method was proposed to detect the appearance of hot spots inside PV 80 
systems (Hu et al., 2014). The TDR approach can detect,localize, and diagnose faults in PV systems, 81 
but the system must be turned off, which affects system productivity. TDR also requires 82 
sophisticated tools to introduce the input signal. Of course, the effectiveness of model-based 83 
fault-detection approaches relies on the accuracy of the models used. 84 

1.2. Motivation and contributions 85 

Until recently, statistical process control charts have not been widely used to monitor the 86 
performance of PV systems. Zhao et al. (2013) proposed a statistical technique using three outlier 87 
rules to classify deviations. Recently, Platon et al. (2015) proposed to use the three-sigma rule for 88 
online fault detection in PV systems. 89 

However, the three-sigma rule, also known as the Shewhart chart (Montgomery, 2007), loses the 90 
ability to detect incipient faults in process data because it makes decisions based only on 91 
information about the process in the last observation. Incorporating information about the entire 92 
process history, including previous or recent observations, into the decision rule can help to 93 
improve sensitivity to small shifts. The exponentially weighted moving average 94 

(EWMA) scheme incorporates information from the entire process history, rather than using only 95 
the most recent observation. This makes it more sensitive than the Shewhart chart to small 96 
anomalies. The main contribution of this work is to exploit the advantages of the exponentially 97 
weighted moving average (EWMA) chart and those of one-diode modeling for enhancing detection 98 
performances of PV systems, especially for detecting small faults in DC side of PV system and 99 
shading fault. Such a choice is mainly motivated by the greater ability of the EWMA metric to 100 
detect small fault in process mean, which makes it very attractive as fault detection approach. 101 
Note that the main advantage of EWMA chart is that it can be easily implemented in real time 102 
because of the low computational cost, which is not the case in a classifiers based methods (the 103 
classifier algorithms are performed offline rather than online). A decision can be made for each 104 
new sample by comparing the value of the EWMA decision statistic with the value of the 105 
threshold. 106 

An anomaly is declared if the EWMA statistic exceeds the threshold. To do so, residuals, which are 107 
the differences between the measured and predicted MPP for the current, voltage and power, 108 
from the PV array simulation model are generated. Under normal operating conditions, the 109 
residuals in a PV system are close to zero due to measurement noise and errors, while they 110 
significantly deviate from zero when the system is faulty. Residuals are used as fault indicators. 111 



Then, an EWMA chart is used to monitor the residuals to reveal abnormalities. Once the fault has 112 
been detected, the next step is expected to determine its cause. The proposed approach can also 113 
effectively diagnose fault types based on the output DC current and voltage. Indeed, fault 114 
diagnosis can help the operators and engineers in the process-monitoring scheme and therefore 115 
significantly reduce the risk of safety problems or loss in profitability. The proposed fault detection 116 
strategy has been validated using measurements from the 9.54 kWp PV plant at the Renewable 117 
Energy Development Center in Algiers, Algeria. The remainder of this paper is organized as follows. 118 
Section 2 gives a brief overview of the grid-connected PV plant that provided data for this study. In 119 
Section 3, one-diode model is reviewed. Section 4 introduces the EWMA chart and its use in fault 120 
detection. Section 5 applies the proposed fault-detection and diagnosis procedure to the PV plant 121 
in Algeria. Finally, Section 6 concludes with a discussion and suggestions for future research 122 
directions. 123 

2. The grid-connected PV system in Algiers, Algeria 124 

We assessed our fault detection method using practical data collected from a grid-connected 125 
photovoltaic (GCPV) system located at Renewable Energy Development Center (CDER) in Algiers, 126 
Algeria. This PV system operates from June 21st, 2004, and the output power by this system is 127 
injected directly into the national electric distribution network without any storage device. 128 

This 90 module PV system 106 Wp is installed on the roof of the CDER building as shown in Fig. 1. 129 
This 9.54 kWp rated system has an output DC voltage of 125–450 V and an output AC voltage of 130 
220 V. It comprises three sub-arrays of 30 modules each. The outputs of these three sub-arrays 131 
are connected to a single-phase 2.5 KW PV inverter (IG30 Fronius). Each sub-array consists of 30 132 
Isofoton (106 W-12 V) PV modules, which are grouped into two parallel strings of fifteen PV 133 
modules in series. Irradiance measurements are collected with a Kipp & Zonen CM11  134 
thermoelectric pyranometer and the temperature is measured with a K-type thermocouple. 135 

An Agilent 34970A data logger acquires the data through a connection to the local grid through an 136 
inverter, a safety control box and a meter. When the utility grid is not energized the inverter 137 
immediately stops providing power to the grid. The main components of the GCPV system are 138 
shown in Fig. 2. The data from only one sub-array are used to simulate both healthy and faulty 139 
operating conditions under various meteorological conditions. The electrical characteristics of the 140 
Isofoton 106–12 PV module are summarized in Table 1. 141 

The standard test conditions for these solar panels were determined at 25 ºC and solar irradiance 142 
of 1000 W/m2. The real measurements (ie., MPP voltage and current) were collected every 143 
second. 144 

Table 1 145 
Electrical characteristics of the Isofoton 106-12 PV module under standard test condition. 146 
Electrical characteristics of the solar panels tested in this study Value 147 
Peak power (PMPP)        106W 148 
Voltage at maximum power point (VMPP)     17.4 V 149 
Current at maximum power point (IMPP)     6.10 A 150 



Open circuit voltage (Voc)       21.6 V 151 
Short circuit current (Isc)       6.54 A 152 

 153 

 154 

Fig. 1. The PV array installed on the roof of the CDER building in Algiers, Algeria 155 
(Arab et al., 2005). 156 
 157 
 158 
 159 

 160 
 161 
 162 
Fig. 2. The main components of grid-connected PV system used in this study. 163 
 164 



2.1. Typical faults in PV systems 165 
Generally, a PV system can be affected by different types of faults that can result in significant loss 166 
of power in a PV system. 167 
According to the fault duration, two types of faults can be distinguished: temporary and 168 
permanent faults. Temporary faults, such as shading, disappear after a certain period of time or 169 
after being manually cleared in cases of dust, leaves or bird dropping. The PV system then returns 170 
to its normal operating conditions. On the other hand, permanent faults, including short circuits 171 
and open circuits are persistent or ongoing. Three well-known faults commonly occurred in the DC 172 
side of PV systems (short circuits, open circuits and partial shading) are studied in this paper (see 173 
Fig. 3). 174 
A short-circuit fault can affect cells, bypass diodes or modules. It is mainly due to the infiltration of 175 
water into modules or to bad wiring between the module and the inverter. Additionally, aging of 176 
PV modules, which is caused by long-term operation of the PV system, is one of the main sources 177 
of short-circuit faults. For example, there is a short-circuit fault at point ‘F1’ on the second string 178 
on thright of the PV array in Fig. 3. 179 
An open-circuit fault may occur if any current path that is in series to the load is accidentally 180 
removed or opened from a closed circuit. Such a situation mainly occurs due to a break in wires 181 
between PV modules or solar cells. An example of an open circuit fault is shown at point at ‘F2’ in 182 
Fig. 3. Open-circuit faults occur when a conductor is accidentally removed from the closed 183 
circuit. 184 
A partial shading fault occurs when part of the PV array is shaded while the other part is normally 185 
exposed to the solar irradiance. This occurs due to several reasons including passage of 186 
clouds, dirt on PV modules, snow, or any other light barrier. Nearby obstacles might also interfere 187 
and cast shadows, resulting in reduced power output. Even a small amount of shade can 188 
dramatically reduce the output amperage of a PV system. 189 
 190 
3. PV module modeling 191 
Numerous models have been reported in the literature that model energy production of PV cells. 192 
The one-diode model (ODM) is the most common model used to predict energy production 193 
from PV cells (Duffie and Beckman, 2013). This model is based on modeling the solar cell as a light-194 
generated current source connected in parallel with a diode with series and parallel resistances 195 
accounting for resistive losses (see Fig. 4). 196 
ODM determines the resulting current and voltage given the parameters of the solar cell (McEvoy 197 
et al., 2012) as follows: 198 

 199 
where I and V are the generated current and voltage of the solar cell, respectively. Iph, also called 200 
the photogenerated current, corresponds to the amount of current generated by incoming 201 
photons; it is proportional to the irradiance and the area of the solar cell. I0 is the dark saturation 202 
current, n is the diode’s ideality factor. Rs and Rsh are the series and shunt resistances, 203 
respectively. kB is Boltzmann’s constant (kB = 1:38064852  10-23 J K-1). T is the cell’s  temperature 204 
and q is the electronic charge (q = 1:60217662 10-19 C). 205 
The simulation of a PV array is comprised of three stages summarized next. 206 
 207 
Step 1 : Model parameters extraction 208 
ODM in Eq. (1) depends on the values of five unknown 209 



parameters (Iph; I0; n, Rs and Rsh), which determine the overall performance of a solar cell. These 210 
parameters are not provided in the manufacturer’s datasheet. Hence, accurate extraction of these 211 
parameters is a crucial step in PV system modeling. Indeed, solar cell parameters extraction could 212 
be defined as an optimization problem, wherein the cost function to be minimized is defined as 213 
the root mean square error (RMSE) between the measured and the predicted I-V curves by ODM. 214 
 215 

 216 
 217 
Fig. 3. The faulty operating cases considered in this paper. 218 
 219 

 220 

 221 
Imeas and Vmeas are the measured output current and voltage of 222 
the reference PV module respectively (they define the static 223 



I-V curve measurements of the reference PV module), h is the vector of the five unknowns 224 
electrical parameters [Iph; I0; n, Rs and Rsh], m stands for the number of experimental 225 
data used in the parameters extraction process. The static I-V curve of a reference PV module are 226 
measured using an I-V curve tracer when the module is isolated from the inverter. 227 
In practice, I-V curve tracer takes less than one second to measure the current–voltage (I-V) 228 
characteristic of the tested PV module. Of course, the aim of this optimization is to find 229 
the optimal parameters values that minimize the objective function and provides the lowest RMSE 230 
value. In this paper,these five parameters have been extracted using the Artificial Bee Colony 231 
(ABC) algorithm (Garoudja et al., 2015; Abouet al., 2015) on the basis of the real measured static 232 
(I-V) data, the predicted data obtained from the one diode model and the available parameters in 233 
Table 1. 234 

 235 
Fig. 4. Equivalent circuit of a solar cell based on a current source and a diode, with 236 
losses represented by series and parallel resistance. 237 
 238 
Step 2 : Model simulation. 239 
 The identified parameters via ABC algorithm, which are given in Table 2, are used to predict the 240 
MPP coordinates of current, voltage and power of the entire PV array. The 241 
PV array model is simulated using PSIMTM/MatlabTM cosimulation. Using this co-simulation, the 242 
entire PV array is physically constructed (physical PV modules) as two parallel PV string, of fifteen 243 
PV modules each. This model relies on access to both irradiance and solar panel temperature 244 
measurements to predict the MPP coordinates. 245 
Step 3 : Model validation 246 
Model validation is possibly the most important step in PV array modeling. In this step, the ability 247 
of the simulated model to mimic accurately the real behavior of the monitored 248 
PV plan is evaluated. Specifically, the identified ODM 249 
parameters are used to build the entire PV array cosimulation model, then this later is used to 250 
mimic the real PV array behavior under different meteorological conditions. 251 
The input variables of the simulated model consist of real measured meteorological conditions of 252 
temperatures and irradiances. The output variables are the PV array MPP coordinates of current, 253 
voltage and power. The predicted MPP coordinates of voltage and power obtained 254 
from the simulated model are then compared to the real measured MPP coordinates collected 255 
from the real PV array. Here, the co-simulation model is fitted to the fault-free data from the GCPV 256 
system described above. Fig. 5(a) and (b) respectively shows the measured and predicted 257 
DC current and DC power for a cloudy day, June 24, 2008. This figure shows that the model 258 
suitably fits the measured data, thus indicating that the selected parameters are satisfactory. This 259 
figure also shows that after sunset and during periods of negligible irradiances, the system 260 



completely shuts down. This is done to reduce power consumption and thereby increase overall 261 
efficiency. Scatter plot of the measured and predicted DC current and DC power are presented in 262 
Fig. 6(a) and (b). These plots indicate that the PV array simulation model predicts the measured 263 
DC current and DC power well. 264 
 265 

 266 
In addition, to evaluate the quality of the simulation model with the selected parameters, three 267 
numerical criteria are used: R2, the mean absolute percent error (MAPE) and RMSE. These were 268 
calculated as follows: 269 

 270 

  271 
where yt are the measured values, ^yt are the corresponding predicted values by the simulation 272 
model and m is the number of samples. 273 
Goodness-of-fit results for the three cells studied are presented in Table 3. 274 
Results in Table 3 show that the PV array simulation model with the selected parameters captures 275 
the measured DC current and power. The r2 values above 0.9, the low RMSE of 0.1932 and the 276 
low MAPE of 6.57% demonstrate that ODM provides good predictive quality. 277 
 278 

279 
 Fig. 5. Measured and predicted plot of DC current (a) and DC power (b) for June 24, 2008. 280 



 281 
 282 
Fig. 6. Scatter plot of the measured and predicted DC current (a) and DC power (b) for June 24, 283 
2008. 284 
 285 

 286 
4. Fault detection approaches 287 
The overarching goal of this paper is to improve the PV system efficiency by monitoring its DC side 288 
in an efficient manner. Traditionally in manufacturing industries, statistical quality control is 289 
used for monitoring and controlling product quality. Furthermore, statistical process control charts 290 
can provide early warnings of abnormal changes in system operations, helping operators to 291 
identify the onset of potential faults, such as short circuits, open circuits, sensor bias and shading 292 
faults. These statistical charts include Shewhart, cumulative sum (CUSUM), and EWMA charts. 293 
Univariate statistical methods, such as the Shewhart chart and EWMA, have been widely used to 294 
monitor industrial processes for many years (Montgomery, 2005). These methods are briefly 295 
introduced here. 296 
 297 
4.1. Shewhart monitoring chart 298 
In a Shewhart chart, a sequence of samples (denoted as xi) is plotted against time (Montgomery, 299 
2005). Upper and lower control limits for the samples are established around the process mean (l) 300 
based on the three-sigma rule, i.e., UCL /LCL = µ0 ± σ0, where σO is the standard deviation of the 301 
fault-free data computed when the process is running under healthy conditions. Whenever the 302 
most recent measured point or a consecutive sequence of points is outside the control limits, an 303 



abnormal condition is encountered and attention is focused on diagnosing the source of the 304 
problem. 305 
Here, the Shewhart chart is used as a benchmark for fault detection in the DC side of a PV system. 306 
In the next section, EWMA chart and its use in fault detection will be briefly described. 307 
 308 
4.1.1. EWMA monitoring chart 309 
In this section, the basic idea of the EWMA chart and its properties are introduced. For a more 310 
detailed discussion about its design, implementation and properties, refer to (Montgomery, 311 
2005; Reynolds and Stoumbos, 2005; Lucas and Saccucci, 1990; Hunter, 1986). EWMA is 312 
constructed based on exponential weighting of available observations, a design that provides 313 
improved sensitivity to small changes in the mean of a multivariate process. 314 
EWMA charts are able to detect small shifts in the process mean because the EWMA statistic is a 315 
time-weighted average of all previous observations. The EWMA control scheme was first 316 
introduced by Roberts (Hunter, 1986; Lucas and Saccucci, 1990), it has been extensively used in 317 
time series analysis. The EWMA monitoring monitoring chart is an anomaly-detection technique 318 
widely used by scientists and engineers in various disciplines (Kadri et al., 2016; Zerrouki et al., 319 
2016; Harrou et al., 2015; Harrou and Nounou, 2014; Montgomery, 2005). Assume that fx1; x2; . . . 320 
; xng are individual observations collected from a monitored process. The expression 321 
for EWMA is (Montgomery, 2005): 322 

 323 
The starting value, z0, is usually set to be the mean of fault-free data, l0. zt is the output of EWMA 324 
and xt is the observation from the monitored process at the current time. The forgetting 325 
parameter λ ε [0; 1] determines how fast EWMA forgets the data history. 326 
From Eq. (7), it is easy to see that 327 

 328 
Using Eq. (7) recursively, we find that the EWMA is a linear combination of the observations: 329 
 330 

 331 
Eq. (8) can also be written as: 332 
 333 

 334 
where λ (1- λ)1-t is the weight for xt , which decreases off exponentially for past observations. In 335 
other words, as time passes the smoothed statistic zt becomes the weighted average of a greater 336 
and greater number of the past observations xt-n, and the weights assigned to previous 337 
observations are in general proportional to the terms of the geometric progression  338 



 339 
 340 
 A geometric progression is the discrete version of an exponential function, so this is where the 341 
name for this method originated. The weighting for older data point decrease exponentially, giving 342 
much more important to recent observation while still not discarding older observation entirely. 343 
It can be seen that if k is small, more weight is assigned to past observations and the chart is 344 
efficient at detecting small changes in the process mean. On the other hand, if k is large, more 345 
weight is assigned to the current observation and less weight is assigned to its previous 346 
observations. The chart is thus able to detect large shifts (Montgomery, 2005; Kadri et al., 2016). 347 
In the special case when k ¼ 1, EWMA is equal to the most recent observation, xt , and provides 348 
the same results as the Shewhart chart provides. As k approaches zero, EWMA approximates the 349 
CUSUM criteria, which give equal weight to historical observations. 350 
Under fault-free conditions, the standard deviation of zt is defined as 351 
 352 

 353 
 354 
However, in the presence of a mean shift at the time point, 355 
 356 

 357 
It can be seen from Eq. (11) that the mean of the EWMA statistic in the presence of faults is a 358 
weighted average of l0 and l1, and the weight of l1 is larger when n is larger. Therefore, the EWMA 359 
statistic, zt , indeed contains useful information about the mean shift. 360 
 361 
The upper and lower control limits of the EWMA chart for detecting a mean shift are 362 
 363 

 364 
4.2. ODM-based EWMA for PV monitoring 365 
In general, the model is first built and then fault diagnosis procedures is performed accordingly. 366 
The estimation of the residuals, which is crucial in model-based fault detection, depends on the 367 
appropriate system modeling. Once ODM is built based on data representing historically normal 368 
operations and validated, it can be used to monitor future deviations in the system. Here, the 369 
advantages of ODM with those of the EWMA monitoring chart are combined, which should result 370 
in an improved fault detection system, especially for detecting small changes. Specifically, in this 371 
approach, the EWMA chart is employed for fault detection to indicate how well the measurements 372 
conform to the model or how large the deviation from the normal model is. Towards this end, 373 
the EWMA chart is applied to monitor residuals obtained from ODM (see Fig. 7). 374 
The differences between the real measured and predicted MPP current, MPP voltage and MPP 375 
power obtained from the simulated model are the residuals that can be used as indicators to 376 
detect a possible fault. 377 

 378 
 379 



where It and bI t are the measured and predicted MPP current, respectively, and Vt and bVt are 380 
the measured and predicted MPP voltage; and Pt and bPt are the measured and predicted peak 381 
power. 382 
In this work, the residuals are used as fault indicators. Indeed, under normal operation, the 383 
residuals are close to zero due to measurement noise and errors, while they significantly deviate 384 
from zero in the presence of abnormal events. The implementation of the developed monitoring 385 
methods comprises two stages: off-line modeling and on-line monitoring. In the off-line modeling 386 
phase, ODM is used on the normal operating data (training data), enabling us to obtain a 387 
reference model. Then, the fault detection procedure is executed by using the reference simulated 388 
model with the EWMA chart in the on-line monitoring phase. The ODM-EWMA fault detection 389 
algorithm is summarized in Table 4. 390 
To improve system operations, we want not only to monitor the system in an efficient manner but 391 
also to identify the type of fault that results in any degradation of the PV system, including 392 
declines in operation reliability, and profitability, such that we can respond accordingly by making 393 
any necessary correction to the system. 394 
Towards this end, the EWMA chart is applied based on the residual of output DC power to detect 395 
the presence of faults. Then, the type of fault is identified by analyzing the monitoring results of 396 
the EWMA chart when it is applied to the residuals of output DC current and voltage. The fault 397 
identification procedure is summarized in Fig. 8. 398 
The proposed strategy tests at the first stage the peak power to detect a fault. This choice is 399 
mainly due to the fact that faults affect inevitably the peak power. Thus, the peak power is used as 400 
a fault indicator in the detection phase. On the other hand, both DC output current and voltage 401 
are unsuitable to be used as sensitive indicators in this phase. For example, when a short circuit 402 
occurs in one PV module from a string, current indicator value will not be significantly changed 403 
from its healthy set point. Meanwhile, a substantial change will appear in the power indicator 404 
(peak of power). 405 
Besides, the same situation occurs when a string is completely disconnected. Indeed, the DC 406 
output voltage remains unaltered regarding its healthy status in contrast to the peak power 407 
decrease significantly. Moreover, the ranking of the current and voltage indicators is unimportant 408 
in the fault diagnosis phase. 409 
 410 
5. Results and discussion 411 
 412 
5.1. Detection results 413 
The proposed fault detection scheme is validated using practical data collected from the 9.54 kWp 414 
GCPV system installed at CDER in Algeria (see Section 2). In this section, the ability of the EWMA 415 
chart to detect the presence of faults in the data and to identify  the type of detected fault is 416 
assessed. To assess the strength of the EWMA-based monitoring chart, three case studies 417 
involving different types of faults were conducted. In the first case study, it is assumed that the PV 418 
system contains one or more short-circuited PV module (case A). In the second case study, an 419 
open-circuit PV string is considered (case B). In the third case study, the monitored 420 
PV system is exposed to temporary shadowing (case C). 421 
 422 



 423 
 424 

 425 
5.1.1. Normal operating conditions 426 
Monitoring results from ODM-based Shewhart chart under normal operating conditions are shown 427 
in Fig. 9(a)–(c), monitoring results from the EWMA chart under normal operating conditions 428 
are presented in Fig. 10(a)–(c). Since the Shewhart plots for current, voltage and power shown in 429 
Fig. 9(a)–(c) are based on normal operating data, we expect that almost all the data will lie within 430 
the lower and upper control limits. Similarly, the data points in the EWMA charts are also within 431 
the 95% confidence limits (see Fig. 10(a)–(c)). It can be concluded that the ODM model describes 432 
the data well when no faults are present. 433 
 434 
5.1.2. Case study of open-circuit PV strings 435 
In this case study, the performance of the two monitoring charts when there is an open-circuit 436 
fault is investigated. To do so, an open-circuit fault in a PV array is introduced by disconnecting 437 
the second string from the monitored PV system (see fault #1 in Fig. 11) between sample times 438 
300–500.  439 



 440 
 441 
To monitor the PV system, the residuals (i.e.,eI ; eV and eP) are first computed. Then both 442 
monitoring charts, Shewhart and EWMA, are used for fault detection. The Shewhart and EWMA 443 
charts based on the MPP residuals of current, voltage and power are presented in 444 
Figs. 12 and 13, respectively. The shaded area is the region where the fault is introduced. The plots 445 
in Figs. 12(c) and 13(c) indicate that before the occurrence of the fault, both charts are within the 446 
lower and upper control limits. The PV system is thus working normally. 447 
For this case, the two charts can both give fault signals because the introduced fault is quite large. 448 
Figs. 12(c) and 13(c), show that the Shewhart and EWMA charts based on the output 449 
power residuals, eP, decrease significantly and exceed the lower control limits, indicating that 450 
there is a significant power loss. 451 



 452 
Since one of the two strings of a PV array is disconnected at the fault, a large amount of power 453 
(nearly 50% of the rated power) is lost. After detecting the presence of a fault, the monitoring 454 
results related to the output DC current and voltage are analyzed to identify the type of fault. Both 455 
Figs. 12(b) and 13(b) are within the lower and upper control limits before and after the fault, 456 
which means that the DC voltage is almost the same after the occurrence of this open-circuit fault. 457 
The two monitoring charts based on the current residuals are given in Figs. 12(a) and 13(a). These 458 
charts show that both charts exceed the lower control limits, indicating the presence of a faulty 459 
string (open-circuit fault). Indeed, the current of the faulty string drops to zero when the string is 460 
disconnected from the PV array. As a result, the residuals, which indicate the difference between 461 
the simulated and measured DC current, decrease immediately after the occurrence of the open-462 
circuit fault. From this case study, it can be seen that the open-circuit fault in a PV array increases 463 
the power loss, reduces the array current and results in almost the same array voltage as the 464 
normal PV array voltage. These results indicate the efficiency of both fault detection 465 
strategies in detecting and diagnosing open-circuit faults in a PV system. 466 



 467 
 468 
5.1.3. Case study of a short circuit in a string of PV modules 469 
In this case study, the detection of short-circuited PV modules in the monitored PV system is 470 
investigated. Four examples are given in this case study (see Fig. 11, faults #2–#5). 471 
(1) One short-circuited PV module: In the first example, the second module of the first string is 472 
bypassed from observation number 300 until the end of the testing data (see Fig. 11, fault #2). 473 
The output DC current, voltage and power were monitored using Shewhart and EWMA charts. The 474 
two monitoring charts are shown in Fig. 14(a)–(c) and Fig. 15(a)–(c). Fig. 14 shows that the 475 
Shewhart chart cannot detect this fault. The Shewhart chart is insensitive to this fault because it is 476 
designed to detect relatively moderate and large faults, while the fault in this case is quite small. 477 
This is mainly due to the fact that the Shewhart chart uses only observed data at a particular 478 
instant to make a decision about the process performance and it ignores past data. On the other 479 
hand, the plot in Fig. 15(c) clearly shows the capability of the EWMA monitoring chart in detecting 480 
this small fault. From the plots in Fig. 15(a) and (b), it can be seen that the DC current residuals are 481 
within the control limits, while the DC voltage residuals exceeds the lower control limit. Thus, we 482 
can conclude that the detected fault is related to a faulty module in the string. This case study 483 
clearly shows the superiority of the EWMA over the Shewhart chart in detecting small faults. 484 
(2) Three short-circuited PV modules: In the second example, three modules have been short 485 
circuited in the first string (see Fig. 11, fault #3). The monitoring results of the Shewhart and 486 
EWMA charts are shown in Figs. 16 and 17, respectively. The performance of the Shewhart chart 487 
when it is applied to the output power residuals is presented in Fig. 16(c), which shows that the 488 
Shewhart statistic clearly violates the lower control limit. The Shewhart chart detects this fault 489 
(i.e., a power loss) but it misses some data. On the other hand, the plot in Fig. 17(c) clearly shows 490 
the capability of the EWMA monitoring chart in correctly detecting this moderate fault without 491 
missed data. This short-circuit fault degrades the performance of the monitored systems and leads 492 
to a significant power loss (i.e., approximatively 15% power loss). 493 
 494 
After detecting a fault based on the output DC power, the two monitoring charts based on 495 
residuals of output DC current and voltage, which are shown in Figs. 16(a) and (b) and 17(a) and 496 



(b), can provide more information about the type of fault. Both Figs. 16(b) and 17(b) show fault 497 
signals because the decrease in output DC voltage in this case is quite large. The output DC current 498 
from the array does not change by much. Because the output DC voltage decreases compared to 499 
the output DC voltage of the normal array and the output DC current does not change by much, 500 
we then conclude that this fault is a short circuit in the PV array. 501 
(3) Five short-circuited PV modules: In the third example, five modules in first string are 502 
disconnected (Fig. 11, fault #4). This fault leads to a power loss of 30% compared to the healthy PV 503 
array. Both monitoring charts can detect this quite large fault as shown in Figs. 18(c) and 19(c). 504 
Similar to the cases above, to identify this fault, we look at the monitoring results related to the 505 
array voltage and current (see Figs. 18(a) and (b) and 19(a) and (b)). In fact, it is a fault that 506 
corresponds to a short-circuited PV module, since both charts based on voltage are below the 507 
control limits (see Figs. 18(b) and 19(b)), and the current does not change by much (see Figs. 18  508 
(a) and 19(a)). This demonstrates the effectiveness of the proposed strategy in detecting and 509 
identifying faults related to shortcircuited modules. 510 
(4) Ten short-circuited PV modules: In the fourth example, ten modules in the second string of the 511 
monitored PV array were short circuited (see Fig. 11, fault #5). Indeed, the fault resulted in large 512 
voltage drops and significant power loss (i.e. nearly 63%). Both monitoring charts can clearly 513 
detect and identify this quite large fault (see Figs. 20(a)–(c) and 21(a)–(c)). 514 
 515 
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5.1.4. Case study of shading fault 522 
The aim of this case study was to assess the potential of the proposed ODM-based EWMA method 523 
to detect and identify partial shading faults in a PV system. 524 
(1) Temporarily shading of four PV modules: In this example, the first four modules of the PV 525 
system were temporarily fully shaded (see Fig. 22, fault #6), between samples 150 and 250. Figs. 526 
23 and 24 show that both charts can detect and identify this fault. This type of fault may cause 527 
decreases in current and voltage and significant power loss. 528 
(2) Fully shading of one PV module: In this example, the module number 14 of the first string of 529 
the PV system were temporarily exposed to fully shading (see Fig. 22, fault #7), between samples 530 
150 and 250. The shewhart chart fails to detect this fault, as shown in Fig. 25(a)–(c). Fig. 26(c) 531 
shows that the EWMA chart is able to detect the fault, but it cannot identify its type (see Fig. 26(b) 532 
and (c)). 533 
 534 
5.1.5. Case study of multiple faults 535 
To assess the capacity of the proposed method to detect multiple faults, five modules in the PV 536 
system were exposed to a partial shading (Fig. 22, fault #6), between samples 150 and 250, and 537 
then five modules in one string were short-circuited (Fig. 22, fault #8). 538 
Monitoring results of the Shewhart and EWMA charts are illustrated in Figs. 27 and 28, 539 
respectively. In this case, both charts can accurately detect and identify these multiple faults. 540 
In summary, our ODM-EWMA fault detection scheme provides satisfactory results in detecting and 541 
identifying short-circuit faults, open-circuit faults in PV strings and partial shading. In addition, to 542 
detect small changes (e.g., one short-circuited module in a string), the EWMA chart is more 543 
effective. 544 

 545 
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 548 
 549 
6. Conclusion 550 
Solar-energy-based photovoltaic (PV) systems are increasingly gaining worldwide attention due to 551 
the high electricity consumption in combination with the desired environmental friendly solutions 552 
for power production development. Indeed, PV systems are continuously exposed to many factors 553 
that significantly degrade their performances and efficiency. Faults such as short-circuit, 554 
open circuit and shading in PV systems can reduce solar energy productivity, leading to economic 555 
losses. This paper reports the development of a statistical fault detection approach for monitoring 556 
the performances of PV systems by detecting faults on the DC side and diagnosing the type of 557 
detected fault. This approach uses a simulation model based on the extracted ODM model 558 
parameters to predict the maximum current, voltage and power generated from the PV system. 559 
Residuals, which are the difference between measured and predicted variables, are used as input 560 
for the EWMA chart. Then, the EWMA based on residuals of output DC power is used to identify, 561 
in real time, the presence of faults in the monitored system. Voltage and current residuals are 562 
used to differentiate between open-circuit faults, short-circuit faults and partial shading in a PV 563 
system. Using practical data from a grid connected PV system at CDER in Algeria, the effectiveness 564 
of ODM-EWMA to detect and identify faults in an actual PV system has been demonstrated. 565 
 566 



Despite the promising results for fault detection and diagnosis obtained using the ODM-EWMA 567 
approach, the work carried out in this paper raises a number of questions and provides some 568 
directions for future works. In particular, the following points merit consideration from 569 
researchers. 570 
 571 
 Beside fault detection and diagnosis capability, the EWMA chart is able to capture fault severity 572 
(amplitude). The larger the fault is, the greater the amplitude of the EWMA statistic compared to 573 
its amplitude under healthy conditions. Therefore, this approach can be extended to determine 574 
the number of faulty PV strings and/or PV modules. 575 
 576 
 Herein, the diagnosis of the fault is done on the basis of only the MPP coordinates of current and 577 
voltage to identify the type of fault. In fact, the shading of one PV module or small portion 578 
of PV module does not necessarily affect simultaneously current and voltage MPP coordinates. 579 
Hence the proposed diagnosis method cannot correctly discriminate this fault. To bypass this 580 
shortcoming, we plan to include more input data such as open circuit voltage (Voc), short circuit 581 
current (Isc) and fill factor (FF) since they are affected significantly by shading fault. 582 
 583 
 The presence of noisy and correlated data makes the fault detection more difficult as the 584 
presence of noise degrades fault detection quality and most methods are developed for 585 
independent observations. In fact, wavelet-based multiscale representation 586 
of data has been shown to provide effective noise-feature separation in the data and to 587 
approximately decorrelate the auto-correlated data. As future work, the aim is to develop 588 
multiscale EWMA fault detection methods that can provide enhanced performances of this 589 
technique, especially when data observed from PV system are noisy and highly autocorrelated. 590 
 591 
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