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1. Introduction 

A necessary precondition for high production is availability of the technical equipment. In 
addition, reliability engineers have to build a reliable and efficient production system. The 
system reliability affects essentially the reliability of its equipments. This characteristic is a 
function of equipment age on system’s operation life. In this work, we consider series-
parallel systems. To keep the desired levels of availability, strongly performs a preventive 
maintenance actions to components are best than breakdown maintenance. This suggestion 
is supported by a number of case studies demonstrating the benefits of PM in (Gude et al, 
1993). In this case, the task is to specify how PM activity should be scheduled. One of the 
commonly used PM policies is called periodic PM, which specifies that systems are 
maintained at integer multiple of some fixed period. Another PM is called sequential PM, in 
which the system is maintained at a sequence of interval that have unequal lengths. The first 
kind of PM is more convenient to schedule. Contrary the second is more realistic when the 
system require more frequent maintenance at it age. A common assumption used in both 
these PM is that minimal repair is conducted on system if it fails between successive PM 
activities. In other words, minimal repairs do not change the hazard function or the effective 
age of the system. 
Traditionally PM models assume that the system after PM is either as good as new state in 
this case is called perfect PM or simply replacement, as bad as old state the same as minimal 
repair, where he only restores the function of the system, this concept is well understood in 
the literature  (Brown et al, 1983). The more realistic assumption is that the system after PM 
not return at zero age and remains between as good as new and as bed as old. This kind of 
PM is called imperfect PM. The case when equipment fails (damage), a corrective 
maintenance (CM) is performed which returns equipment to operating condition, in fact 
specially, the task of preventive maintenance actions served to adjust the virtual age of 
equipment. Our particular interest is under investigation to present an harmony search 
algorithm which determines the optimal intervals of PM actions to minimize maintenance-
cost rate or maximize mission reliability. 
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1.1 Summuray of previous work  

Several years ago, much work was reported on policy optimization of preliminary planned 
PM actions with minimal repair as in (Zhao, 2003), (Borgonovo et al, 2000). Most of these 
researches are based on two popular approaches to determine the optimal intervals for a PM 
sequence. The first is reliability-based method and the second is optimization method. 
In the first one the PM is performed whenever the system availability or the hazard function 
of the system reaches a predetermined level and the optimal PM intervals will be selected. 
The second is finding the optimal intervals as a decision variable in the optimization 
problem. (Lin et al 2000) presents an algorithm to determine the optimal intervals based on 
the reliability-based method and in there models the effective age reduction and hazard 
function are combined. (Levitin et al, 2000) present a genetic algorithm which determine a 
minimal cost plan of the selecting PM actions which provides the required levels of power 
system reliability. A list of possible PM actions available for each MSS, are used. Each PM 
action is associated with cost and reduction age coefficient of its implementation.  

1.2 Approach and outlines 

The proposed approach is based on the optimization method using harmony search 
algorithm, which determines the intervals sequence of PM actions to minimize the 
maintenance-cost subject to availability or (reliability) constraints.  The goal of the proposed 
approach is to know when, where, to which component and what kind of available PM 
actions among the set of available PM actions should be implemented. To evaluate the 
reliability and the effect of PM actions of series-parallel MSS, UGF method is applied. It’s 
proved to be effective at solving problem of MSS redundancy and maintenance in (Monga et 
al, 1997), (Levitin et al, 1999) and (Ushakov et al, 2002). 

2. Preventive maintenance 

It has been shown that the incorporation of the preventive maintenance has a benefit and 
success. Also it was observed that the impact of the decrease of component failure rate and 
improvement of component reliability is vital to maintain efficiency of production. The  
 

 

Fig. 1. Series-parallel Power System 
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major subject of maintenance is focused on the planning maintenance service of the power 

system. Such as cleaning, adjustment and inspection performed on operation’s lifetime are 

classed as a preventive maintenance policy. However, all actions of PM not capable to 

reduce age component to zero age is imperfect. There are two main alternatives for 

modeling an imperfect PM activity. The first one assumes that PM is equivalent to minimal 

repair with probability p  and 1 p−  is the equivalent to replacement in (Nakagawa, 1999). 

The second model where the imperfect PM directly analyzes how the hazard function or the 

effective age change after PM as in (Lin et al, 2000). The proposed model is based on 

reduction age concept. Let consider the series-parallel MSS system shown in figures 1. 
If the component j  undergoes on PM actions calendar at chronological times as follows: 

 ( 1 , ...,j jnt t ) (1) 

 

Based on the second model description, the effective age after i-th PM actions may be 
written as: 

 ( ) ( ) ( )j j jit t t tτ τ += + −   for ( )1 , 1ji jit t t i n+< < ≤ ≤  (2) 

and ( )1 1( ) ( ) ( ) ( )j ji i j ji i j ji ji jit t t t tτ ε τ ε τ+ +
− −= = + −  where ( )j jitτ +  is the age of component 

immediately after the i–th PM action which ranges in the interval [0, 1]. By definition, we 

assume that (0) 0jτ = , 0 0jt =  and iε  is the age reduction coefficient. Two limits for PM 

actions is, where 1iε =  and 0iε = . In the first case the component at least be restored to “as 

bed as old” state which assumes that PM does not affect the effective age. In the second case 

the model reduce the component age to “as good as new”, which means that the component 

age reaches zero age (replacement). In fact, all PM actions which improve the component 

age are imperfect. As it be mentioned and demonstrated in (Lin et al, 2000), the hazard 

function of component j , as function of its actual age, can be calculated as 

 ( )*
0( )j j j jh h t hτ= +  (3) 

 

where ( )jh t  is the hazard function is defined when equipment does not undergo PM actions 

and 0jh  correspond to the initial age of equipment. The reliability of the equipment j  in the 

interval between PM actions i  and 1i +  can be written as:  

 
( )

( )

*( ) exp ( )
j

j ji

t

j
t

r t h x dxj

τ

τ +

⎛ ⎞
⎜ ⎟= − ∫⎜ ⎟
⎝ ⎠

 

 ( )exp ( ( )) ( ( ))j j ji j jH t H tτ τ+= −  (4) 

 

( )jH τ  represents the accumulative hazard function. Clearly if jit t=  in equation (4) the 

reliability reaches the maximum and is equal to 1. 
The Minimal repairs are performed if MSS equipment fails between PM actions, and there 
cost expected in interval [0, t] can be given as 
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0

( )
t

Mj j jC c h x dx= ∫  (5) 

Possible equipment j , undergoes PM actions at each chronological time 1 , ...,
jj jnt t , in this 

case, the total minimal repair cost is the sum of all cost can be written as :  

 ( )
( )1

1
0 0( )

( ) ( ( )) ( ( ))
j j

tn nj ji

Mj j j j j ji j j ji
i itj ji

C c h x dx c H t H t

τ

τ

τ τ
+

+
+

= =+
= = −∑ ∑∫  (6) 

where 0 0jt =  and 1jnj
t T+ =  where T represents the lifetime.  

3. Optimization problem 

Let consider a power system organized with components connected in series arrangement. 

Each component contains different component put in parallel. Components are 

characterized by their nominal performance rate jΞ , hazard function jh (t) and associated 

minimal repair cost jC . The system is composed of a number of failure prone components, 

such that the failure of some components leads only to a degradation of the system 

performance. This system is considered to have a range of performance levels from perfect 

working to complete failure. In fact, the system failure can lead to decreased capability to 

accomplish a given task, but not to complete failure. An important MSS measure is related 

to the ability of the system to satisfy a given demand. 

When applied to electric power systems, reliability is considered as a measure of the ability 

of the system to meet the load demand (W), i.e., to provide an adequate supply of electrical 

energy ( Ξ ). This definition of the reliability index is widely used for power systems: see 

e.g., (Ross, 1993), (Murchland, 1975), (Levitin et al, 1996), (Levitin et al, 1997) and  (Levitin et 

al, 1998). The Loss of Load Probability index (LOLP) is usually used to estimate the 

reliability index (Billinton et al, 1990). This index is the overall probability that the load 

demand will not be met. Thus, we can write R = Probab(ΞMSS≥ W) or R = 1-LOLP with 

LOLP = Probab(ΞMSS<W). This reliability index depends on consumer demand W. 
For reparable MSS, a multi-state steady-state instantaneous availability A is used as 

Probab(ΞMSS ≥ W). While the multi-state instantaneous availability is formulated by 
equation (7):  

 { }, ( )
j

MSS j
D

A t W P t
Σ ≥

= ∑  (7) 

where ΞMSS (t) is the output performance of MSS at time t . To keep system reliability at 

desired level, preventive and curative maintenance can be realized on each MSS. PM actions 

modify components reliability and CM actions does not affect it. The effectiveness of each 

PM actions is defined by the age reduction coefficient ε  ranging from 0 to 1. As in (Levitin 

et al, 2000), the structure of the system as defined by an available list of possible PM actions 

( )v  for a given MSS. In this list each PM actions ( )v  is associated with the cost of its 

implementation ( )pC v , and ( )M v  is the number of equipment affected corresponding to 

their age reduction ( )vε . Commonly the system lifetime T  is divided into y  unequal 
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lengths, and each interval have duration yθ  1 y Y≤ ≤ , at each end of this latter an PM action 

is performed. This action will be performed if the MSS reliability ( , )R t w   becomes lower 

than the desirable level 0R .  

Let us remark that the increase in the number of intervals increases solution precision. On 

the other hand, the number of intervals can be limited for technical reasons. All the PM 

actions performed to maintain the MSS reliability are arranged and presented by a vector 

V as they appear on the PM list. Each time the PM is necessary to improve the system 

reliability; the performed following action is defined by the next number from this vector. 

When the scheduled PM action iv  was insufficient to improve reliability, automatically the 

1iv +  action should be performed at the same time and so on. For a given vector V , the total 

number jn  and chronological times of PM action in equation (1) are determined for each 

component j 1 j J≤ ≤ . For all scheduled PM actions iv V∈ . The total cost of PM actions can 

be expressed as 

 ( ) ( )
1

N

p p i
i

C V C v
=

= ∑  (8) 

and the cost of minimal repair can be calculated as 

 ( ) ( )1
1 0

( ( )) ( ( ))
jnJ

M j j ji j ji
j i

C V c H t H tτ τ ++
= =

= −∑ ∑  (9) 

The optimization problem can be formulated as follows: find the optimal sequence of the 
PM actions chosen from the list of available actions which minimizes the total maintenance 
cost while providing the desired MSS availability. That is,  
Minimize: 

 ( ) ( ) ( )p Mf V C C V C V→ = +  (10) 

Subject To: 

 Aθ (V, D, t) ≥ R0  (11) 

To solve this combinatorial optimization problem, it is important to have an effective and 
fast procedure to evaluate the availability index. Thus, a method is developed in the 
following section to estimate the system availability. 

4. Reliability estimation based on Ushakov’s method 

The last few years have seen the appearance of a number of works presenting various methods 
of quantitative estimation of systems consisting of devices that have a range of working levels 
in (Reinschke, 1985) and (El-Neweihi, 1984). Usually one considers reducible systems. In 
general forms the series connection, the level of working is determined by the worst state 
observed for any one of the devices, while for parallel connection is determined by the best 
state. However, such the approach is not applicable for the majority of real systems. 
In this paper the procedure used is based on the universal z-transform, which is a modern 
mathematical technique introduced in (Ushakov, 1986). This method, convenient for 
numerical implementation, is proved to be very effective for high dimension combinatorial 
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problems. In the literature, the universal z-transform is also called UMGF or simply u-
transform. The UMGF extends the widely known ordinary moment generating function 
(Ross, 1993). The UMGF of a discrete random variable Ξ is defined as a polynomial:  

 
1

( ) j
J

j
j

u z P z
Ξ

=
= ∑  (12) 

The probabilistic characteristics of the random variable Ξ can be found using the function 

u(z). In particular, if the discrete random variable Ξ is the MSS stationary output 

performance, the availability A is given by the probability Proba( ) WΞ ≥  which can be 

defined as follows:  

 ( )WProba(  W) ( )u z z−Ξ ≥ = Φ  (13) 

where Φ  is a distributive operator defined by expressions (14) and (15):  

 W , if W
( )

0, if W

P
Pzσ

σ
σ

− ≥⎧
Φ = ⎨ <⎩

 (14) 

 ( )W W

1 1

j j
J J

j j
j j

P z P z
Ξ − Ξ −

= =

⎛ ⎞
Φ = Φ∑ ∑⎜ ⎟
⎝ ⎠

 (15) 

It can be easily shown that equations (14)–(15) meet condition Proba(Ξ≥ W) = 
Wj

jP
Ξ ≥
∑ . By 

using the operator Φ , the coefficients of polynomial u(z) are summed for every term with 

j WΞ ≥ , and the probability that Ξ  is not less than some arbitrary value W  is 

systematically obtained. 

Consider single devices with total failures and each device i has nominal performance iΞ  

and reliability Ai. The UMGF of such an device has only two terms can be defined as:  

 0( ) (1 ) i
i i iu z A z A zΞ= − + = (1 ) i

i iA A zΞ− +  (16) 

To evaluate the MSS availability of a series-parallel system, two basic composition operators 
are introduced. These operators determine the polynomial u(z) for a group of devices. 

4.1 Parallel devices 

 Let consider a system device m containing Jm devices connected in parallel. The total 

performance of the parallel system is the sum of performances of all its devices. In power 

systems, the term capacity is usually used to indicate the quantitative performance measure 

of an device in (Chern, 1992). Examples: generating capacity for a generator, carrying 

capacity for an electric transmission line, etc. Therefore, the total performance of the parallel 

unit is the sum of capacity (performances) in (Ushakov, 1986). The u-function of MSS device 

m containing mJ  parallel devices can be calculated by using the ℑ  operator: 

1 2( ) ( ( ), ( ), ..., ( ))p nu z u z u z u z= ℑ , where 1 2
1

( , , ..., )
n

n i
i=

ℑ Ξ Ξ Ξ = Ξ∑  
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Therefore for a pair of devices connected in parallel: 

1 2
1 1 1 1

( ( ), ( ) ( , ) i jji
n n m a bba

i j i j
i j i j

m
u z u z P z Q z PQ z

+

= = = =
ℑ = ℑ =∑ ∑ ∑ ∑  

 

The parameters ai and bj are physically interpreted as the performances of the two devices. 

n and m are numbers of possible performance levels for these devices. Pi and jQ  are steady-

state probabilities of possible performance levels for devices. One can see that the ℑ  

operator is simply a product of the individual u-functions. Thus, the device UMGF is: 

1
( ) ( )

mJ

p j
j

u z u z
=

= ∏ . Given the individual UMGF of devices defined in equation (11), we have: 

1
( ) (1 )

m
i

J

p j j
j

u z A A zΞ

=
= − +∏ .  

4.2 Series devices 

When the devices are connected in series, the device with the least performance  
becomes the bottleneck of the system. This device therefore defines the total  
system productivity. To calculate the u-function for system containing n devices connected 

in series, the operator δ  should be used: 1 2( ) ( ( ), ( ), ..., ( ))s mu z u z u z u zδ= ,where  

{ }1 2 1 2( , , ) min , ,m mδ Ξ Ξ Ξ = Ξ Ξ Ξ… …  so that 

{ }min ,

1 2
1 1 1 1

( ( ), ( )) , i jji
n m n m a bba

i j i j
i j i j

u z u z P z Q z PQ zδ δ
= = = =

⎛ ⎞
= =∑ ∑ ∑ ∑⎜ ⎟

⎝ ⎠
 

Applying composition operators ℑ  and δ  consecutively, one can obtain the UMGF of the 

entire series-parallel system. To do this we must first determine the individual UMGF of 

each device. 

4.3 Devices with total failures 

Let consider the usual case where only total failures are considered and each subsystem of 

type i and version vi has nominal performance Ξiv and availability Aiv. In this case, we have:  

Proba(   )  iv ivAΞ = Ξ = and Proba(   W)  1 ivAΞ = = − . The UMGF of such an device has only 

two terms can be defined as in equation (11) by * 0( ) (1 ) 1iv iv
i iv iv iv ivu z A z A z A A zΞ Ξ= − + = − + . 

Using the ℑ  operator, we can obtain the UMGF of the i-th system device containing ki 

parallel devices ( ) ( )*( ) ( ) (1 )
ii

iv
kk

i i iv ivu z u z A z AΞ= = + − . 

The UMGF of the entire system containing n devices connected in series is:  

 

( )
( )
( )

1

2

1
1 1

2
2 2

(1 ) ,

( ) (1 ) ,...,

(1 )

v

v

nv

k

v

k

s v v

kn
nv nv

A z Av

u z A z A

A z A

δ

Ξ

Ξ

Ξ

⎛ ⎞+ −⎜ ⎟
⎜ ⎟
⎜ ⎟= + −
⎜ ⎟
⎜ ⎟+ −⎜ ⎟
⎝ ⎠

 (17) 

www.intechopen.com



Search Algorithms and Applications 

 

306 

To evaluate the probability Pr ( )oba WΞ ≥  for the entire system, the operator Φ  is applied to 

equation (18):  

 ( )WPr ( ) ( )soba W u z z−Ξ ≥ = Φ  (18) 

5. The harmony search approach 

The problem formulated is a complicated NP-hard complex problem. The total number of 
different solutions to be examined is very large. An exhaustive examination of the enormous 
number of possible solutions is not feasible given reasonable time limitations. Thus, because 
of the search- space size of the problem. Adopting the idea that existing evolutionary or 
meta-heuristic algorithms are found in the paradigm of natural processes, a new algorithm 
can be conceptualized from a musical performance process (say, a jazz trio) in (Geem et al, 
2005) and (Mahdavi et al, 2007) involving searching for a better harmony. Musical 
performance seeks a best state (fantastic harmony) determined by aesthetic estimation, as 
the optimization process seeks a best state (global optimum: minimum cost; minimum error; 
maximum benefit; or maximum efficiency) determined by objective function evaluation. 
Aesthetic estimation is done by the set of the pitches sounded by joined instruments, as 
objective function evaluation is done by the set of the values produced by composed 
variables; the aesthetic sounds can be improved practice after practice, as the objective 
function values can be improved iteration by iteration in (Fesanghary et al, 2008). 
Figure 2 shows the structure of the Harmony Memory (HM) that is the core part of the HS 
algorithm. Consider a jazz trio composed of saxophone, double bass, and guitar. There exist 
certain amount of preferable pitches in each musician's memory: saxophonist, {Do, Fa, Mi, 
Sol, Re}; double bassist, {Si, Do, Si, Re, Sol}; and guitarist, {La, Sol, Fa, Mi, Do}. If saxophonist 
randomly plays {Sol} out of its memory {Do, Fa, Mi, Sol, Re}, double bassist {Si} out of {Si, 
Do, Si, Re, Sol}, and guitarist {Do} out of {La, Sol, Fa, Mi, Do}, the new harmony (Sol, Si, Do) 
becomes another harmony (musically chord). And if this new harmony is better than 
existing worst harmony in the HM, the new harmony is included in the HM and the worst 
harmony is excluded from the HM (Omran, 2008). This procedure is repeated until fantastic 
harmony is found. 
 

 

Fig. 2. Synoptic Modeling HS For Optimization 

www.intechopen.com



An Efficient Harmony Search Optimization 
for Maintenance Planning to the Telecommunication Systems 

 

307 

Step 1. Initialize: 
               Set N_istrument:=N_sybsystem {N is the integer number}, 

               Set MHCR:=0.7{harmony memory considering rate}, 

               Set PAR:=0.35{Pitch adjustment rate}, 

               Set PAD {Pitch adjustment decision}, 

               Set NI:=75{improvisation number}, 

               Set t:=0 {t is the time counter}, 

               Set Interval_t:=0 {θ is Interval time}, 

               Set List PM_actions [Ln1]:= 1nPυ⎡ ⎤
⎣ ⎦  {Available PM_actions}, 

               Set PM_Action:=0 {m is the time counter}, 

               For every Components (i,j) set an initial value  { }1 1 1
11 1,...,ij nx x x→ 1

ijx , 

               Set For All components (1 ≤ j ≤ J): 

               Set Effectve_age:= τj  

               Set ( ) 0
jjH τ + =  

               For i:=1 to n do 

               Matk (HM):= i {starting component is the first element of the Mat list of the k-th 

               instrument}, 

               The HM matrix is filled with randomly generated as the HMS. 

Step 2. Improvise a New list Matk until is full {this step will be repeated (n-1) 

times}, { }11 12, ,...,n n n n
nkx x x xυ υ υ υ→  

               2.0.  y:=Interval_time+1 

               2.1 T:= Interval_time +t’ 

               2.2 Effectve_age:=τj+t 

               2.3 New PM_action:= 1
n

nx Pυ υ⎡ ⎤∈ ⎣ ⎦  

Step 3.  
     Compute For j:=1 To J 

        ( )j jH τ  According equation (3) 

      End 

      Compute For j:=1 To J 

       ( )j jr τ  According equation (4) 

Step 4.   
                Compute For j:=1 To n do {for every k-th instrument on Subsystem i } 

                Choose the PM_Action with probability  

                
( )

1

1 1
n
ij

Yes If ran PAR
PAD for x

No If ran PAR
υ ≤⎧⎪
⎨ −⎪⎩ ;

 

                Then ( ) *n n
ij gi ix x ran bwυ υ← ±  

                With Cost j, corresponding to Equation (8) and (9) 

                Increment to the k-th instrument on the i subsystems  

                Insert PM_Action and Cost j in MATk (s). 
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Step 5.  

             If R (t,Ξ) < R0 increment and define the new PM_Action to perform, add the new cost 
             to total Cost. 
             Recalculate the reliability r 
             Else Goto Step 2. 

             If R (t,Ξ) >= evaluate the cost of minimal repair for all components (1 ≤ j ≤ J):  and add 
             these costs to the total cost. 
             Print minimal total cost to the corresponding reliability and  
             Stop. 

6. Illustrative example 

6.1 Description of the power system to be optimized 

Let consider a series-parallel MSS (transmission system) consisting of three subsystem 

connected in series arrangment as depickted in figure.3 and 4. The system contains 13 

equipments with different performance and reliabilty.  

The transmission systems is composed by a emission and reception station where the signal 

is modeled to the analyzer series parallel components and emitted to orbital satellite. 

Concerning reception the series parallel system is composed by modelyzer RTID-2, 2 and 3 

other amplifier TM-841, 842 and 843. Following the process and transmitted by telecom 

network (Linking with lines and without lines transmission). At the end the system supplies 

a graphique and TMAE station. The reliability of each component is defined by veibull 

function: ( ) 1
0( ) ( )h t t h

δδλ δ τ −= +   MSS lifetime is 20 years. The time for possible PM_actions 

are spaced intervals of θ= 2.0 months. The problem is to guarantee a PM plan wich provide 

the system work during its lifetime with a performance, relaibility not less than Ξ0, R0 and 

the age reduction is the same of all components ε =0.56 

 

 

Fig. 3. Detailed Series-Parallel Transmission System 
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Fig. 4. Synoptic Series-Parallel Transmission System 

 

 λ δ h0 Min_Cost Ξ % 

1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

0.05 
0.05 
0.05 
0.05 
0.02 
0.02 
0.02 
0.08 
0.07 
0.05 
0.08 
0.03 
0.004 

1.8 
1.8 
1.8 
1.8 
1.3 
1.3 
1.3 
1.6 
1.8 
1.8 
1.7 
1.6 
1.5 

0.001 
0.003 
0.003 
0.003 
0.002 
0.002 
0.002 
0.006 
0.005 
0.003 
0.002 
0.001 
0.001 

 

1.02 
0.9 
0.9 
0.9 
0.7 
0.7 
0.7 
0.8 
0.6 
0.8 
0.8 
0.9 
0.8 

 
 

40 
80 
80 
80 
70 
70 
70 
85 
89 
90 
90 
95 
87 

Table 1. Parameter Of components 

 

PM_Actions Components PM_Cost 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
 

1- SAT 
2- RTID-1-2-3 
2- RTID-1-2-3 
2- RTID-1-2-3 
3-TM-841-2-3 
3-TM-841-2-3 
3-TM-841-2-3 

4-Tele-Linking 
5-LBV-SET 
5-LBV-SET 

6-CV-11 
6-CV-11 

7- Graphique-S 
8-TMAE 

10.2 
2.9 
4.1 
2.2 
2.9 
4.1 
2.2 
3.9 
4.1 
3.7 
5.5 
2.2 
3.5 
8.2 

 

Table 2. Parameter Of Pm_Actions  
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t PM_Actions 
Affected 

Components 
R (t,0.8) 

12.250 

16.652 

20.00 

22.11 

25.64 

 

2(6) 

8 

9 

4 

2 

 

3 

4 

5 

2 

1 

 

0.923 

0.922 

0.954 

0.911 

0.937 

 

Table 3.The Best Pm plan By HS For R(t,0.8)>0.9 

 

Action times Kind of PM_Actions 
Affected 

Components 

Levels 

R (t,0.8) 

09 

07.20 

05.85 

06.03 

25.60 

4 

2(7) 

8 

10 

11 

2 

3 

4 

5 

7 

0.920 

0.987 

0.985 

0.960 

0.983 

Table 4.The Best Pm plan By Ant Colony For R(t,0.8)>0.9 

7. Conclusion 

In this paper we formulated the problem of imperfect maintenance optimization for series-

parallel transmission system structure. This work focused on selecting the optimal sequence 

of intervals to perform PM actions to improve the availability. The model analyzes cost and 

reliability, to construct a strategy to select the optimal maintenance intervals, formulating a 

complex problem. An exhaustive examination of all possible solution is not realistic, 

considering reasonable time limitations. Because of this, an efficient meta-heuristic can be 

applied (Harmony Search Algorithm) to solve the formulated problem. More specifically, 

the harmony search approach is a good solution for such a combinatorial problem.  
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