12 research outputs found

    LMP-420, a small-molecule inhibitor of TNF-alpha, reduces replication of HIV-1 and Mycobacterium tuberculosis in human cells

    Get PDF
    BACKGROUND: Co-infections of human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (M. Tb) are steadily increasing and represent a major health crisis in many developing countries. Both pathogens individually stimulate tumor necrosis factor-alpha (TNF) release from infected cells and TNF, in turn, enhances the replication of each. A recent report on a Phase I clinical trial suggested that etanercept (soluble TNF receptor) might be beneficial in treating HIV/M. Tb co-infected patients. We sought to determine if a small molecule inhibitor of TNF synthesis and activity could block replication of either organism and thus be a potential adjunct to existing drugs targeting these agents. RESULTS: LMP-420, a novel anti-inflammatory agent that inhibits TNF, was tested for HIV-1 inhibition both alone and in combination with AZT (3' -azido-3-deoxythymidine). LMP-420 alone was tested against M. Tb. HIV-1 infected human peripheral blood mononuclear cells (PBMC) or M. Tb-infected human alveolar macrophages (AM) were treated with a single dose of LMP-420 and viral or bacterial replication determined after 7 or 5 days respectively. Viral replication was determined from supernatant p24 levels measured by ELISA. M. Tb replication was determined by bacterial culture of macrophage lysates. LMP-420 alone inhibited HIV replication over 7 days with an IC(50 )of ~300 nM. Combination of LMP-420 with AZT doubled the level of HIV inhibition observed with AZT alone. LMP-420 alone inhibited the replication of virulent M. Tb by >80%, more than that observed with anti-TNF antibody alone. CONCLUSION: Inhibition of TNF with inexpensive, small-molecule, orally-active drugs may represent a useful strategy for enhancing the activity of currently-available antiviral and anti-M. Tb agents, particularly in those areas where co-infections with these pathogens act to synergistically enhance each other

    IRAK-4-and MyD88-Dependent Pathways Are Essential for the Removal of Developing Autoreactive B Cells in Humans

    Get PDF
    Most autoreactive B cells are normally counterselected during early B cell development. To determine whether Toll-like receptors (TLRs) regulate the removal of autoreactive B lymphocytes, we tested the reactivity of recombinant antibodies from single B cells isolated from patients deficient for interleukin-1 receptor-associated kinase 4 (IRAK-4), myeloid differentiation factor 88 (MyD88), and UNC-93B. Indeed, all TLRs except TLR3 require IRAK-4 and MyD88 to signal, and UNC-93B-deficient cells are unresponsive to TLR3, TLR7, TLR8, and TLR9. All patients suffered from defective central and peripheral B cell tolerance checkpoints, resulting in the accumulation of large numbers of autoreactive mature naive B cells in their blood. Hence, TLR7, TLR8, and TLR9 may prevent the recruitment of developing autoreactive B cells in healthy donors. Paradoxically, IRAK-4-, MyD88-, and UNC-93B-deficient patients did not display autoreactive antibodies in their serum or develop autoimmune diseases, suggesting that IRAK-4, MyD88, and UNC-93B pathway blockade may thwart autoimmunity in humans
    corecore