849 research outputs found

    Hamilton-Jacobi approach to Berezinian singular systems

    Get PDF
    In this work we present a formal generalization of the Hamilton-Jacobi formalism, recently developed for singular systems, to include the case of Lagrangians containing variables which are elements of Berezin algebra. We derive the Hamilton-Jacobi equation for such systems, analizing the singular case in order to obtain the equations of motion as total differential equations and study the integrability conditions for such equations. An example is solved using both Hamilton-Jacobi and Dirac's Hamiltonian formalisms and the results are compared.Comment: LaTex, 30 pages, no figure

    Octet-Baryon Form Factors in the Diquark Model

    Full text link
    We present an alternative parameterization of the quark-diquark model of baryons which particularly takes care of the most recent proton electric form-factor data from the E136 experiment at SLAC. In addition to electromagnetic form factors of the nucleon, for which good agreement with data is achieved, we discuss the weak axial vector form factor of the nucleon as well as electromagnetic form factors of Λ\Lambda and Σ\Sigma hyperons. Technical advance in calculating the pertinent analytic expressions within perturbative quantum chromodynamics is gained by formulating the wave function of the quark-diquark system in a covariant way. Finally, we also comment on the influence of Sudakov corrections within the scope of the diquark model.Comment: 16 pages, WU-B 93-07, latex, uuencoded postscript files of 7 figures appended at the end of the latex fil

    On the covariant quantization of tensionless bosonic strings in AdS spacetime

    Get PDF
    The covariant quantization of the tensionless free bosonic (open and closed) strings in AdS spaces is obtained. This is done by representing the AdS space as an hyperboloid in a flat auxiliary space and by studying the resulting string constrained hamiltonian system in the tensionless limit. It turns out that the constraint algebra simplifies in the tensionless case in such a way that the closed BRST quantization can be formulated and the theory admits then an explicit covariant quantization scheme. This holds for any value of the dimension of the AdS space.Comment: 1+16 pages; v4 two clarifications adde

    The Large Magellanic Cloud and the Distance Scale

    Full text link
    The Magellanic Clouds, especially the Large Magellanic Cloud, are places where multiple distance indicators can be compared with each other in a straight-forward manner at considerable precision. We here review the distances derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing Binaries, and show that the results from these distance indicators generally agree to within their errors, and the distance modulus to the Large Magellanic Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science. From a presentation at the conference The Fundamental Cosmic Distance Scale: State of the Art and the Gaia Perspective, Naples, May 201

    IceCube - the next generation neutrino telescope at the South Pole

    Get PDF
    IceCube is a large neutrino telescope of the next generation to be constructed in the Antarctic Ice Sheet near the South Pole. We present the conceptual design and the sensitivity of the IceCube detector to predicted fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete simulation of the detector design has been used to study the detector's capability to search for neutrinos from sources such as active galaxies, and gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth International Conference on Neutrino Physics and Astrophysics, Munich 200

    Muon Track Reconstruction and Data Selection Techniques in AMANDA

    Full text link
    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st

    Results from the Antarctic Muon and Neutrino Detector Array (AMANDA)

    Full text link
    We show new results from both the older and newer incarnations of AMANDA (AMANDA-B10 and AMANDA-II, respectively). These results demonstrate that AMANDA is a functioning, multipurpose detector with significant physics and astrophysics reach. They include a new higher-statistics measurement of the atmospheric muon neutrino flux and preliminary results from searches for a variety of sources of ultrahigh energy neutrinos: generic point sources, gamma-ray bursters and diffuse sources producing muons in the detector, and diffuse sources producing electromagnetic or hadronic showers in or near the detector.Comment: Invited talk at the XXth International Conference on Neutrino Physics and Astrophysics (Neutrino 2002), Munich, Germany, May 25-30, 200

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
    • 

    corecore