252 research outputs found

    On the performance of a mixed RF/MIMO FSO variable gain dual-hop transmission system

    Get PDF
    In this work, we propose a mixed radio frequency (RF) and multiple-input-multiple-output (MIMO) free-space optical (FSO) system based on a variable-gain dual-hop relay transmission scheme. The RF channel is modeled by Rayleigh distribution and Gamma–Gamma turbulence distribution is adopted for the MIMO FSO link, which accounts for the equal gain combining diversity technique. Moreover, new closed-form mathematical formulas are obtained including the cumulative distribution function, probability density function, moment generating function, and moments of equivalent signal-to-noise ratio of the dual-hop relay system based on Meijer’s G function. As such, we derive the novel analytical expressions of the outage probability, the higher-order fading, and the average bit error rate for a range of modulations in terms of Meijer’s G function. Furthermore, the exact closed-form formula of the ergodic capacity is derived based on the bivariate Meijer’s G function. The evaluation and simulation are provided for system performance, and the effect of spatial diversity technique is discussed as well

    c-Lysozyme promotes proliferation of chicken embryonic fibroblast through bFGF pathway

    Get PDF
    The egg white (EW) contains the majority of bioactive components which maintain embryo growth and differentiation. The discovery of new growth promoting factor in egg white will provide vital clue to understand the developmental regulation of early chicken embryo. The egg white heated with different temperatures (63.5, 70 and 95°C) underwent testing on its growth-promoting effect on chicken fibroblast in vitro. The purified c-lysozyme and the expression of related genes in basic fibroblast growth factor (bFGF) pathway were analyzed to ascertain its growth-promoting mechanism. 13 h after egg white treatment, more fibroblast synchronized with serum starvation transited into S phrase from G0/G1 in EW group than in the control group (CM) and reached the phase of peak proliferation at 15 h after treatment. It was found that c-lysozyme had the function of promoting cells growth and was decided by gradient heat inactivation of egg white. The addition of more than 0.25 mg/ml c-lysozyme produced significant increase in the cellular proliferation during 48 to 72 h of culture. At 13 h after c-lysozyme treatment, the bFGF, cyclin D, cyclin A and CDK2 were up-regulated significantly and promoted the transition from G0/G1 into S phrase and the accurate completion of S phrase. C-Lysozyme contains a growth-activating domain to promote the cell proliferation besides its anti-microbe domain.Key words: c-Lysozyme, fibroblast, fibroblast growth factor receptor (FGFR), cell cycle

    Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma.

    Get PDF
    Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM\u27s natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE: GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711

    Comprehensive Dissection of PDGF-PDGFR Signaling Pathways in PDGFR Genetically Defined Cells

    Get PDF
    Despite the growing understanding of PDGF signaling, studies of PDGF function have encountered two major obstacles: the functional redundancy of PDGFRα and PDGFRβ in vitro and their distinct roles in vivo. Here we used wild-type mouse embryonic fibroblasts (MEF), MEF null for either PDGFRα, β, or both to dissect PDGF-PDGFR signaling pathways. These four PDGFR genetically defined cells provided us a platform to study the relative contributions of the pathways triggered by the two PDGF receptors. They were treated with PDGF-BB and analyzed for differential gene expression, in vitro proliferation and differential response to pharmacological effects. No genes were differentially expressed in the double null cells, suggesting minimal receptor-independent signaling. Protean differentiation and proliferation pathways are commonly regulated by PDGFRα, PDGFRβ and PDGFRα/β while each receptor is also responsible for regulating unique signaling pathways. Furthermore, some signaling is solely modulated through heterodimeric PDGFRα/β

    Genome-Wide Association Study in East Asians Identifies Novel Susceptibility Loci for Breast Cancer

    Get PDF
    Genetic factors play an important role in the etiology of both sporadic and familial breast cancer. We aimed to discover novel genetic susceptibility loci for breast cancer. We conducted a four-stage genome-wide association study (GWAS) in 19,091 cases and 20,606 controls of East-Asian descent including Chinese, Korean, and Japanese women. After analyzing 690,947 SNPs in 2,918 cases and 2,324 controls, we evaluated 5,365 SNPs for replication in 3,972 cases and 3,852 controls. Ninety-four SNPs were further evaluated in 5,203 cases and 5,138 controls, and finally the top 22 SNPs were investigated in up to 17,423 additional subjects (7,489 cases and 9,934 controls). SNP rs9485372, near the TGF-β activated kinase (TAB2) gene in chromosome 6q25.1, showed a consistent association with breast cancer risk across all four stages, with a P-value of 3.8×10−12 in the combined analysis of all samples. Adjusted odds ratios (95% confidence intervals) were 0.89 (0.85–0.94) and 0.80 (0.75–0.86) for the A/G and A/A genotypes, respectively, compared with the genotype G/G. SNP rs9383951 (P = 1.9×10−6 from the combined analysis of all samples), located in intron 5 of the ESR1 gene, and SNP rs7107217 (P = 4.6×10−7), located at 11q24.3, also showed a consistent association in each of the four stages. This study provides strong evidence for a novel breast cancer susceptibility locus represented by rs9485372, near the TAB2 gene (6q25.1), and identifies two possible susceptibility loci located in the ESR1 gene and 11q24.3, respectively

    Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls

    Get PDF
    Recent genome-wide association studies (GWASs) have identified common genetic variants at 5p15.33, 6p21-6p22 and 15q25.1 associated with lung cancer risk. Several other genetic regions including variants of CHEK2 (22q12), TP53BP1 (15q15) and RAD52 (12p13) have been demonstrated to influence lung cancer risk in candidate- or pathway-based analyses. To identify novel risk variants for lung cancer, we performed a meta-analysis of 16 GWASs, totaling 14 900 cases and 29 485 controls of European descent. Our data provided increased support for previously identified risk loci at 5p15 (P = 7.2 × 10−16), 6p21 (P = 2.3 × 10−14) and 15q25 (P = 2.2 × 10−63). Furthermore, we demonstrated histology-specific effects for 5p15, 6p21 and 12p13 loci but not for the 15q25 region. Subgroup analysis also identified a novel disease locus for squamous cell carcinoma at 9p21 (CDKN2A/p16INK4A/p14ARF/CDKN2B/p15INK4B/ANRIL; rs1333040, P = 3.0 × 10−7) which was replicated in a series of 5415 Han Chinese (P = 0.03; combined analysis, P = 2.3 × 10−8). This large analysis provides additional evidence for the role of inherited genetic susceptibility to lung cancer and insight into biological differences in the development of the different histological types of lung cance

    Telomere structure and maintenance gene variants and risk of five cancer types.

    Get PDF
    Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level p value cutoffs ≤3.08 × 10-5 ). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the DCLRE1B region, rs974494 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk.Funding for the iCOGS infrastructure came from: the European Community’s Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 – the GAME-ON initiative), the Department of Defense (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/ijc.3028
    corecore