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Novelty & Impact Statements: 

Utilizing the novel ASSociation analysis based on SubSET (ASSET) meta-analytic approach, we 

examined associations between >200,000 variants in 22 telomere structure and maintenance gene 

regions and colorectal, breast, prostate, ovarian, and lung cancer risk.  We observed pleiotropic 

associations across cancer types in the DCLRE1B, TERC, TERT-CLPTM1L, POT1, and RTEL1 

gene regions.  Additional studies clarifying the mechanisms through which these complex 

association patterns in telomere-related genes influence cancer risk are needed. 
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Abstract: 236 words  

Text: 4,995 words 
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Tables: 3 tables & 3 figures  

Supplementary: 7 Supplementary tables & 2 Supplementary figures  
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ABSTRACT 

Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and 

end-to-end fusions.  Telomeres are maintained by telomerase, a reverse transcriptase encoded by 

TERT, and an RNA template encoded by TERC.  Loci in the TERT and adjoining CLPTM1L 

region are associated with risk of multiple cancers.  We therefore investigated associations 

between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, 

prostate, ovarian, and lung cancer risk.  We performed subset-based meta-analyses of 204,993 

directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of 

European descent.  Independent associations for SNP minor alleles were identified using 

sequential conditional analysis (with gene-level P-value cutoffs ≤3.08x10
-5

).  Of the thirteen 

independent SNPs observed to be associated with cancer risk, novel findings were observed for 

seven loci.  Across the TERT-CLPTML1 region, rs12655062 was associated positively with 

prostate cancer, and inversely with colorectal and ovarian cancers, and rs115960372 was 

associated positively with prostate cancer.  Across the TERC region, rs75316749 was positively 

associated with colorectal, breast, ovarian, and lung cancers.  Across the DCLRE1B region, 

rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and 

colorectal, breast, and ovarian cancers, respectively.  Near POT1, rs116895242 was inversely 

associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely 

associated with prostate and lung cancers.  The complex association patterns in telomere-related 

genes across cancer types may provide insight into mechanisms through which telomere 

dysfunction in different tissues influences cancer risk. 
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Introduction 

Telomeres are complex nucleoprotein structures that cap chromosome ends (1,2), 

protecting them from degradation, double strand breaks, and end-to-end fusions (1,2).  Thus, 

telomeres play an essential role in preserving genomic stability.  Telomeres are maintained by 

the enzyme telomerase, which is made up of a reverse transcriptase encoded by TERT, and an 

RNA template encoded by TERC (1,2), with several other associated proteins encoded by DKC1, 

NOP10, NHP2, NAF1, and GAR1 (1).  The telomere structure itself is composed of simple 

tandem TTAGGG repeats bound by six proteins (encoded by TERF1, TERF2, TINF2, TERF21P, 

ACD, and POT1), termed shelterin.  Other proteins that interact with shelterin are encoded by 

OBFC1, RTEL1, DCLRE1B, TNKS, PINX1, and TEP1 (1).  Germline SNPs in TERC, TERT, 

RTEL1, NAF1 (3), and OBFC1 (3,4) have been associated with telomere length in genome-wide 

association studies (GWAS).  Additional genes associated with telomere length include: BICD1 

(5), ACYP2, ZNF208, MPHOSPH6 (3), and DCAF4 (6). 

 

Susceptibility loci for multiple cancer types have been identified in the TERT and 

adjoining CLPTM1L gene region in GWAS.  Both increased and decreased risk associations 

have been reported for some loci for different cancers (7–9), suggesting complex patterns of 

associations across cancer types which could be due to tissue specificity or interactions with risk 

factors.  Because properly functioning telomeres are vital for genomic stability and chromosomal 

integrity, genetic variants in other telomere structure and maintenance genes may affect cancer 

risk.  Therefore, we sought to examine whether pleiotropic associations for variants in telomere 

structure and maintenance genes are observed across cancer types within the Genetic 
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Associations and Mechanisms in Oncology Network (GAME-ON) (10) and the Genetic and 

Epidemiology of Colorectal Cancer Consortium (GECCO) (11). 

 

GAME-ON was established by the National Cancer Institute (NCI) to foster collaborative 

post-GWAS research across consortia of colorectal, breast, prostate, ovarian, and lung cancers 

(10).  The extensive genomic data available through GAME-ON and GECCO, including over 

61,000 cases and 74,000 controls, were utilized to identify and systematically characterize 

patterns of associations between independent variants in 22 telomere structure and maintenance 

gene regions and risk of colorectal, breast, prostate, ovarian, and lung cancers.  

 

 

Materials and Methods 

Study Population 

Our analysis included 61,851 cancer cases and 74,457 controls of European descent from 

45 GWAS (12) (Table 1).  Details of each study have been described previously (10–19) 

(Supplementary Table 1); at minimum, cases were frequency-matched to controls on age and 

sex.  Each study obtained informed consent from participants; study procedures including 

certifications required for data sharing in accordance with National Institutes of Health policies 

were approved by all Institutional Review Boards.    

 

Consortium-based Imputation and Meta-analysis 

Genotyping was performed using Illumina and Affymetrix GWAS platforms.  Each 

consortium imputed unmeasured single nucleotide polymorphisms (SNPs) for their GWAS data 
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from the 1000 Genomes (Phase 1) March 2012 Build 37 reference panel using MACH, 

IMPUTE, or Minimac (10–19)  Supplementary Table 2.  Within each consortium, per-allele odds 

ratios (ORs) and 95% confidence intervals (CIs) for each SNP and cancer risk were calculated 

using unconditional logistic regression.  Study-specific results were combined using fixed-effects 

meta-analysis.   

 

Gene Selection 

We examined 204,993 SNPs within one mega-base upstream and downstream of the 

transcription start and end sites of the following genes, selected either because of their relevance 

to telomere structure and maintenance, or telomere length: ACD, ACYP2, BICD1, DCLRE1B, 

GAR1, MPHOSPH6, NAF1, NHP2, NOP10, OBFC1, PIK3C3, PINX1-TNKS, POT1, RTEL1, 

TEP1, TERC, TERF1, TERF2, TERF2IP, TERT-CLPTM1L, TINF2, and ZNF208.  The 

chromosomal location and number of SNPs evaluated in each gene is in Supplementary Table 3 

(20).  

 

Cross-Cancer Association Analysis 

ASSociation analysis based on SubSET (ASSET) meta-analysis allows for identification 

of associations that may be in the same, or opposite, direction for some cancer types versus 

others (21).  We performed one-sided and two-sided ASSET analyses using summary data for 

each of the five cancer types, and repeated analyses additionally including the following cancer 

subtypes: estrogen receptor (ER) negative breast; aggressive prostate (defined as Gleason score 

≥8, disease stage 'distant', prostate-specific antigen level >100 ng/ml, or death from prostate 

cancer (17)); endometrioid and serous ovarian; and adenocarcinoma and squamous lung.  Other 
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tumor subtypes were not independently evaluated due to low frequencies.  ASSET takes into 

account matrices of overlapping cases and controls across datasets including overlap between 

cancer types and subtypes (Supplementary Table 4), and adjusts for correlations across studies.  

ASSET groups cancer types by the direction of their associations and identifies the strongest 

associations, so multiple testing penalties may be incurred, widening the CIs of summary results 

(21).  A Manhattan plot of P-values from our two-sided unconditional ASSET analysis was 

produced in R Studio [http://www.rstudio.com].  Forest plots of two-sided unconditional ASSET 

meta-analysis results for individual SNPs were generated by cancer type and subtype.  Because 

ASSET takes into account overlap between cancer types and subtypes, associations appearing 

statistically significant for a given cancer type (or subtype) may be included in the “null” 

category if the association is actually driven by that cancer’s subtype(s) included in the ‘positive” 

or “inverse” category.  Statistically significant positive or inverse associations are only 

interpretable within ASSET if the overall one-sided (positive or negative) test is 

statistically significant. 

 

Gene-level association tests to evaluate all SNPs within a gene and cancer risk after 

taking linkage disequilibrium (LD) into account were performed using VEGAS2 (22) on the 

overall two-sided unconditional ASSET meta-analysis P-values for all SNPs +/-50kb of each 

gene.    

 

Identifying SNPs in Linkage Disequilibrium 

Because GAME-ON and GECCO data included summary statistics for each SNP, not 

individual-level data, we could not calculate LD directly.  Instead, we determined LD using 

individual-level data from European ancestry subjects in the Cancer Genetic Markers of 
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Susceptibility (CGEMS) Project (23) and the Environmental and Genetics in Lung Cancer 

Etiology (EAGLE) study (24).  To be comparable to the summary data used for our analyses, we 

imputed SNPs with IMPUTE2 (25) from 1000 Genomes (Phase 3) October 2014 Build 37 in 

CGEMS and EAGLE (26).  Of 204,718 SNPs in the summary data, 7,015 SNPs could not be 

imputed in CGEMS and EAGLE because they were not present in 1000 Genomes (Phase 1) data 

used to impute the GAME-ON and GECCO data (12,13).  Additionally, 8,977 SNPs failed 

quality-control measures (information score <0.3) and 96 were multi-allelic, leaving 188,630 

markers in CGEMS and EAGLE for analysis. We identified sets of SNPs with r
2
>0.70 in 

CGEMS and EAGLE using Haploview (27).  Given the complicated LD patterns in TERT-

CLPTM1L and TERC, we generated LD plots of all significant SNPs from ASSET analyses, to 

the extent possible, with r
2
<0.70 (27). 

 

Determining Gene-level P-value Thresholds 

We used the Genetic type 1 Error Calculator (GEC) to calculate the effective number of 

independent tests (Me) and statistical significance P-value threshold for each gene (28).  This 

method, developed to address the issue of multiple testing with SNPs in LD, utilizes eigenvalues 

derived from matrices of association test P-values between SNPs to calculate Me.  For each gene, 

the P-value threshold required to keep type I error at 5% equals alpha divided by Me.  Before 

applying the GEC, for simplicity we removed redundant SNPs (r
2
>0.98) from CGEMS and 

EAGLE using gPLINK version 1.07 [http://pngu.mgh.harvard.edu/purcell/plink/] ensuring that 

directly measured SNPs in our dataset were not eliminated, leaving 98,783 markers.  Me and P-

value thresholds for each gene are in Supplementary Table 3.   
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Conditional Analysis 

To identify independent associations, we performed sequential conditional analysis using 

Yang et al.’s method for summary-level data (29).  For each gene, SNPs were ranked by P-value, 

and in each step, a single SNP was added to the ASSET analysis, conditioning on SNPs that 

were most significantly associated in previous steps.  This process was repeated until the two-

sided P-value for the most significant SNP for a step remained below the Me P-value.  To avoid 

collinearity, in each step, the program assesses r
2
 between the next SNP to add and the SNPs that 

are already included in the model, and skips SNPs that are correlated (in this case, r
2
>0.80).  To 

evaluate if this resulted in over-fitting, we performed a sensitivity analysis by conducting 

sequential conditional analysis of TERT-CLPTM1L using pruned variants with r
2
<0.70.  No 

evidence of over-fitting was observed (data not shown).    

 

For SNPs with two-sided P-values that reached multiple comparison-adjusted gene-level 

significance, we assessed whether both the positive and inverse results contributed to the 

association (versus the association being driven primarily by one-sided results) by evaluating 

whether the two-sided P-value was smaller than the most significant one-sided P-value.  We used 

an arbitrary P-value cutoff of 0.01 for the contributing one-sided associations, and considered P-

values between 0.01-0.05 as suggestive. 

 

Functional annotations for SNPs with observed associations that have not been 

previously reported were obtained from HaploReg Version 4.1 on June 14
th

, 2016 (30).  

HaploReg is a data repository which integrates information on sequence conservation, regulatory 

protein binding, epigenomic evidence, expression quantitative trait loci, and regulatory motifs 
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from several sources including the ENCODE project, the GRASP database, GTEx, SiPhy, and 

multiple other studies (30).  

 

 

Results 

We examined 204,993 SNPs in 22 telomere structure and maintenance gene regions and 

colorectal, breast, prostate, ovarian, and lung cancer risk in 61,851 cancer cases and 74,457 

controls (Table 1).  ASSET unconditional two-sided analysis combined P-values for each SNP 

are shown in the Manhattan plot (Supplementary Figure 1).  VEGAS2 gene-based association 

tests evaluating all SNPs in each gene in aggregate and cancer risk were statistically significant 

for DCLRE1B (P=1.1x10
-5

), TERT-CLPTM1L (P=1.0x10
-6

), and RTEL1 (P=9.4x10
-4

). Using the 

per-gene P-value threshold for the effective number of independent tests, we observed significant 

associations with cancer risk for 89 DCLRE1B, 153 TERC, 1 GAR1, 95 TERT-CLPTM1L, 2 

POT1, 1 TERF2, and 7 RTEL1 SNPs (Supplementary Table 5).  After removing SNPs in LD at 

r
2
>0.70 with the lead SNP, 3 DCLRE1B, 19 TERC, 1 GAR1, 23 TERT-CLPTM1L, 2 POT1, 1 

TERF2, and 2 RTEL1 SNPs remained (Table 2).  Correlations between these SNPs (r
2
 and D´) 

are in Supplementary Table 6.  Supplementary Table 7 includes r
2
 correlations between these 

SNPs and all other significantly associated SNPs by gene.  Even after pruning, 3 SNP pairs in 

TERC remained correlated with r
2
>0.70 (rs75982374 and rs76925190; rs80304993 and 

rs969217; rs59758024 and rs9865021), as did 2 SNP pairs in TERT (rs35953391 and rs37004; 

rs3816659 and rs37005).  LD between these highly correlated SNPs and the variants retained is 

in Supplementary Figure 2.   
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For GAR1 and TERF2, only single SNPs reached gene-level significance, and the 

associations were entirely driven by prostate cancer.  However, data were available only for 

prostate and ovarian cancers for the SNP in GAR1, and for colorectal, prostate, ovarian, and lung 

cancers for the SNP in TERF2.  These two SNPs are “very rare” variants with minor allele 

frequencies (MAF) of 0.3%, making them difficult to impute.  For POT1 and RTEL1, only one 

SNP in each gene was significantly associated in sequential conditional analyses.  RTEL1 

rs34978822 was associated with prostate and lung cancers (and was not investigated in breast 

cancer).  rs34978822, and two SNPs in LD with it, are associated with chromatin structure 

changes in a large number of cell lines reported in HaploReg (30).  POT1 rs116895242 was 

associated with colorectal, ovarian, and lung cancers (Table 2); this SNP creates six motif 

changes that may affect transcription factor binding (30).   

  

Table 3 presents results from unconditional and sequential conditional analysis of 

DCLRE1B, TERC, and TERT-CLPTM1L gene regions, including all SNPs with ASSET two-

sided results that reached gene-level P-value cutoffs.  Sequential conditional analysis identified 

11 independent SNPs associated with risk of multiple cancers.  For all conditional results, two-

sided P-values are smaller than one-sided P-values (data not shown).  

 

In TERC, three independent loci were identified (Table 3).  We observed highly 

significant inverse associations with prostate cancer risk for the A allele of rs80304993 

(P=1.51x10
-15

), and the T allele of rs62293480, particularly after conditioning on rs80304993 

(Pconditional=1.44x10
-14

).  Forest plots by cancer type and subtype (Figures 1A and 1B) show that 

these inverse associations were driven solely by overall prostate cancer (OR=0.82, 95% CI=0.78-
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0.86).  In our sequential analysis, the next SNP (ranked by unconditional P-value) to add to the 

model conditioning on both rs80304993 and rs62293480 was rs4420873, but it was excluded due 

to collinearity (r
2
>0.80).  Therefore, the next SNP, rs75316749, was evaluated in the model 

conditioning on rs80304993 and rs62293480, and had a combined conditional P-value of 

1.46x10
-6

.  Unlike the two other SNPs in TERC, rs75316749 was not associated with prostate 

cancer.  The G allele was positively associated in conditional and unconditional analyses with 

colorectal, breast, ovarian, and lung cancers (Table 3), driven specifically by ER-negative breast 

cancer, and lung adenocarcinoma and squamous cancers, but not lung cancer overall (P=2.9x10
-

4
; OR=1.17 95%CI=1.07-1.27; Figure 1C).  While rs75316749 has been reported to result in a 

motif change and enhancer histone changes in breast and fat cell lines, SNPs in very high LD 

including rs115002293 and rs75963875 are associated with enhancer histone changes in a wide 

variety of cell lines, including breast and lung fibroblast cells (30).            

 

In the TERT-CLPTM1L region, six independent loci were identified (Table 3).  The T 

allele of the SNP with the lowest P-value, rs37004, was inversely associated with lung cancer 

overall and specifically lung adenocarcinoma (P=2.2x10
-11

; OR=0.83 95%CI=0.79-0.88; Figure 

2A).  After conditioning on rs37004, rs7717443 had the lowest combined P-value 

(Pconditional=1.26x10
-7

).  The T allele was associated with increased ovarian and lung cancer risks, 

and suggestive decreased colorectal and prostate cancer risks in conditional and unconditional 

analyses.  The unconditional ASSET forest plot by cancer type and subtype for rs7717443 

(Figure 2B) illustrates that the positive associations apply to serous and endometrioid ovarian 

cancer subtypes (but not overall ovarian cancer) and lung adenocarcinoma only (P=2.0x10
-8

; 

OR=1.20 95%CI=1.13-1.28), and inverse associations are for overall colorectal and prostate 
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cancers, and aggressive prostate cancer (P=3.3x10
-2

; OR=0.94 95%CI=0.89-1.00).  Next, after 

conditioning on both rs37004 and rs7717443, the combined P-value for rs10866498 was highly 

significant (9.27x10
-18

).  In conditional and unconditional analyses, the T allele of rs10866498 

was associated positively with colorectal and prostate cancers, and inversely with ovarian and 

lung cancers (Table 3).  Associations with colorectal cancer, and with both overall and 

aggressive prostate cancers (P=0.01; OR=1.06 95%CI=1.01-1.10) were positive, and inverse 

associations were observed with overall lung cancer and lung adenocarcinoma, and serous 

ovarian cancer (P=4.6x10
-7

; OR=0.88 95%CI=0.83-0.92; Figure 2C).  After conditioning on the 

top 3 TERT-CLPTM1L SNPs, rs12655062 was the next most significant (Pconditional=1.13x10
-6

).  

In both unconditional and conditional analyses, the rs12655062 A allele was associated 

positively with prostate and inversely with colorectal and ovarian cancers (Table 3).  Positive 

associations were driven by both overall prostate cancer and aggressive prostate cancer 

(P=1.7x10
-4

; OR=1.14 95%CI=1.06-1.21), and inverse associations by overall colorectal cancer 

and endometrioid and serous ovarian cancers (P=4.1x10
-2

; OR=0.95 95%CI=0.90-1.00; Figure 

2D).  The rs12655062 A allele is associated with reduced expression of IRX4 and 

CTD02194D22.3 in prostate tissue (31), alters six motifs, and results in enhancer histone changes 

in breast and gastrointestinal cell lines (30).  The next most significant SNP in sequential 

analysis after conditioning on the top four TERT-CLPTM1L SNPs was rs115960372 

(Pconditional=3.12x10
-6

).  The T allele was associated positively with prostate cancer and 

suggestively inversely associated with lung cancer in conditional and unconditional analyses 

(Table 3).   This SNP results in changes to chromatin structure in several cell lines (including 

fetal, adult, and carcinoma lung cell lines) and two motif changes (30). The unconditional 

ASSET forest plot by cancer type and subtype revealed that positive associations were driven by 
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overall prostate cancer (OR=1.19 95%CI=1.09-1.29); however, inverse associations were not 

significant in cancer subtype analyses (P=7.5x10
-2

; Figure 2E).  The last significant SNP 

identified from sequential conditional analysis after conditioning on the above five TERT-

CLPTM1L variants was rs2736098 (Pconditional=5.36x10
-6

).  The T allele was suggestively 

positively associated with prostate and lung cancers, and inversely associated with colorectal, 

breast, and ovarian cancers, in both conditional and unconditional analyses (Table 3).  Positive 

associations were driven not only by overall prostate and lung cancers, but also lung 

adenocarcinoma (P=1.9x10
-3

; OR=1.09 95%CI=1.03-1.16; Figure 2F).  

 

In DCLRE1B, rs974404 had the lowest combined P-value (P=9.19x10
-6

).  The G allele 

was inversely associated with prostate and lung cancers, and suggestively positively associated 

with breast and ovarian cancers.  The inverse associations were driven by overall prostate cancer 

and lung adenocarcinoma (P=1.3x10
-3

; OR=0.93 95%CI=0.88-0.97), but not by overall lung 

cancer, or squamous cell lung cancer; positive associations were no longer significant in analyses 

by cancer subtype (P=0.23) (Figure 3A).  Considerable evidence supports that rs974404 and 

correlated SNPs alter gene function. rs974404 results in 27 altered motifs (30), and twelve SNPs 

in LD with rs974404 are associated with increased expression of DCLRE1B in whole blood (30).   

 

After conditioning on rs974404, the most significant SNP in DCLRE1B was rs12144215 

(Punconditional=1.50x10
-5

; Pconditional=2.07x10
-5

).  In unconditional analyses, the rs12144215 T allele 

was inversely associated with colorectal and prostate cancers, and after conditioning on 

rs974404, a suggestive positive association with lung cancer and a significant inverse association 

with breast cancer were additionally observed (Table 3).  The unconditional inverse association 
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was driven by overall colorectal and prostate cancers and the ovarian cancer endometrioid 

subtype (P=1.1x10
-5

; OR=0.90 95%CI=0.86-0.94; Figure 3B); the positive association with lung 

cancer observed in conditional analyses was no longer observed in unconditional analyses by 

cancer subtype (P=1.00).  Several SNPs in LD with rs12144215 change chromatin structure in 

multiple cell lines, including mammary epithelial and lung (30).  

 

 

Discussion 

Our conditional subset-based meta-analysis of GWAS data from five different cancer 

types identified 13 independent SNPs in DCLRE1B, TERC, TERT-CLPTM1L, RTEL and POT1 

gene regions that are associated with risk of multiple cancers.   Across the DCLRE1B region, we 

identified two novel loci: rs974404, which is associated with increased DCLRE1B expression 

(30) and was associated with prostate and lung cancer risk, and rs12144215, which may be 

associated with chromatin structure alterations and was associated with colorectal, breast, and 

ovarian cancers risk.  While the observed associations between two SNPs near the TERC gene, 

rs80304993 and rs62293480, and prostate cancer risk have been reported in GWAS previously 

(32),  we show that the association between rs62293480 and prostate cancer is much more 

significant after conditioning on rs80304993 (Punconditional=1.35x
-06

, Pconditional=2.16x
-13

).  We also 

report a novel finding in the TERC region; after conditioning on both rs80304993 and 

rs62293480, rs75316749 was associated with colorectal, breast, ovarian, and lung cancer risk.  

There is some evidence that this SNP and/or others in LD with it result in enhancer histone 

changes (30). Across the TERT-CLPTML1 regions, we detected six susceptibility loci where 

strong associations with lung and/or prostate cancer risk were generally observed.  We report 
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similar associations previously observed in GWAS for four TERT-CLPTM1L SNPs and lung and 

prostate cancer (7,9), but observe novel findings for two SNPs, rs12655062 and rs115960372.  

The rs12655062 variant is associated with reduced expression of the gene IRX4 in prostate 

tissue, and rs115960372 may alter chromatin structure in multiple tissue types (30).   Our study 

demonstrated that for rs10866498, after controlling for the top two hits in TERT-CLPTM1L, the 

p-value for the inverse association with lung and ovarian cancer was even more significant 

(Punconditional=6.36x10
-8

,  Pconditional=9.27x10
-18

).  We also observed associations between 

rs116895242 in the POT1 region and colorectal, ovarian and lung cancer risk, and between 

rs34978822 in RTEL1 and prostate and lung cancer. There is limited evidence to support that 

these SNPs alter gene function (30).       

 

DCLRE1B plays an important role in protecting telomeres by interacting with the 

shelterin complex to suppress DNA damage-sensing machinery during and after replication 

(20,33).  The SNPs that we observed to be associated with risk of prostate and lung cancers 

(rs974404 in PTPN22), and colorectal, breast, and ovarian cancers (rs12144215 in MAGI3), have 

been previously associated in GWAS with rheumatoid arthritis and Grave’s disease, respectively 

(34,35).  To date, only one SNP in the DCLRE1B gene, rs11552449, has been shown to be 

associated with breast cancer risk in a meta-analysis of nine GWAS and 41 studies in the Breast 

Cancer Association Consortium (P-value=1.8x10
-8

) (16).  However, this SNP did not reach gene-

level statistical significance in our analyses.   

 

TERC is essential for telomerase expression because it encodes the RNA component of 

telomerase required for elongation of telomeric repeats (1,20).  Variants in the 3q26 TERC 
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region have been associated with risk of several different cancers in GWAS, including 

melanoma, glioma, bladder, colorectal, nasopharyngeal, chronic lymphatic leukemia, and 

multiple myeloma (36–42).  In a GWAS of >25,000 prostate cancer cases and controls, Kote-

Jarai et al. reported that rs10936632 was associated with a 10% decrease in prostate cancer risk 

(P-value 1.0x10
-13

) (32).  In our unconditional ASSET analysis we also observed that 

rs10936632, which is in high LD (r
2
=0.97) with rs55953261, was significantly associated with 

reduced prostate cancer risk.  It should be noted that 27% of prostate cancer cases and 26% of 

controls in Kote-Jarai et al. (32) were also included in our investigation.  

 

Our additional TERC findings for rs80304993 and rs62293480 and prostate cancer risk 

have been observed previously in a multi-ethnic meta-analysis of GWAS (43).  These SNPS are 

located in the SKIL gene, which regulates cell growth and differentiation (20).  Our study 

findings for SNP rs75316749 and colorectal, breast, ovarian, and lung cancer risk are novel.  

SNP rs75316749 lies approximately 40kb 3ʹ of the MECOM gene which encodes a protein 

involved in hematopoiesis, apoptosis, development, and cell differentiation and proliferation 

(20). 

 

The TERT gene, at 5p15.33, encodes the catalytic subunit of telomerase (1,20,33) and 

thus plays a vital role in maintaining telomerase expression and facilitating elongation of 

telomeric repeats.  The 5´-end of TERT adjoins CLPTM1L, which is overexpressed in lung and 

pancreatic cancers (9,44,45).  There is extensive LD between the two genes, and susceptibility 

loci in this combined gene region have been associated with multiple cancer types (7–9,46–48).  

The most commonly associated risk variants in the TERT-CLPTM1L regions are rs2736100 and 
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rs401681, respectively.  In GWAS, rs2736100 has been associated with lung, glioma, and 

testicular cancer risk (9,45) while rs401681 has been linked to lung, bladder, pancreas, prostate, 

and skin cancer risk (9,45).  Our unconditional ASSET analyses corroborate the associations 

observed between these variants and lung cancer risk.  

 

Mocellin et al. performed a systematic review of TERT-CLPTM1L polymorphisms and 

cancer risk in 85 studies including 27 GWAS of predominantly individuals of European ancestry 

(87%) (9).  Of the 67 SNPs and 24 tumor types examined, statistically significant associations 

were reported for 22 SNPs, 19 of which were linked to lung cancer.  In our investigation, 

unconditional ASSET analysis confirmed associations with lung cancer for 13 of these at our 

gene level cutoff (P-value <1.32x10
-5

) and for four more at P-value<0.05.  Of particular interest 

from Mocellin et al.’s study was the highly significant association reported between rs2736098 

and lung (4 studies, P-value=2.2x10
-13

) and bladder (3 studies, P-value=8.6x10
-10

) cancer risk 

and the association between rs451360 and lung cancer risk (2 studies, P-value=4x10
-3

) (9).  Our 

findings are in agreement with these observations.  In our analysis, rs37004, 2kb 5ʹ of CLPTM1L 

and in high LD (r
2
=0.89) with rs451360, was the SNP in the TERT-CLPTM1L region with the 

lowest P-value, due entirely to its association with lung cancer risk; rs2736098, located within 

TERT, was associated with lung cancer risk as well as prostate, colorectal, breast, and ovarian 

cancer.  However, we did not observe the lung cancer association reported by Mocellin et al. for 

rs1801075 and we could not evaluate the association with rs4246742 because no data on lung 

cancer were available for this SNP.  

 



21 
 

Similar results were reported for these variants by Wang et al., who utilized the same 

ASSET meta-analytic approach that we used to examine common susceptibility alleles in TERT-

CLPTM1L across six cancer types (lung, prostate, pancreatic, testicular, glioma, and bladder), in 

34,248 cases and 45,036 controls (7).  A large proportion of prostate (60.3%) and lung (46.9%) 

cancer cases from that study were also included in our investigation.  Using sequential 

conditional ASSET analyses, Wang et al. identified five independent risk loci in individuals of 

European ancestry.  These loci are included in the LD plot of our significant unconditional 

ASSET two-sided SNPs retained following LD pruning at r
2
>0.70 (Supplementary Figure 2).  In 

one region, rs13170453 was associated positively with pancreatic and testicular cancer (P-

value=4.38x10
-13

) and inversely with lung cancer risk (P-value=9.5x10
-8

).  Our conditional 

ASSET findings for rs37004, which is in high LD (r
2
=0.88) with rs13170453, confirm the lung 

cancer association observed by Wang et al. for this SNP.  In a second region, Wang et al. 

observed that rs2736098 was associated positively with lung, prostate, and bladder cancer (P-

value=2.58x10
-8

) and inversely with pancreatic and testicular cancer (P-value=4.89x10
-6

).  In our 

investigation, rs2736098, located within TERT, was similarly positively associated in conditional 

analyses with lung and prostate cancer, but inversely with colorectal, breast, and ovarian cancer.  

In a third region, Wang et al. reported rs4449583 as being associated positively with glioma, and 

inversely with testicular, prostate, and pancreatic cancers.  In our unconditional ASSET analysis, 

this SNP was associated positively with ovarian and lung cancer, and inversely with prostate 

cancer.  Cancer associations for the remaining two TERT-CLPTM1L regions including 

rs10069690 and rs13172201 in Wang’s study were not replicated in our investigation.  

Associations for these regions were also not confirmed in supplementary analyses conducted by 

Wang et al. across additional cancer types (esophageal, gastric, breast, endometrial, prostate, 
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osteosarcoma, ovarian, renal, and additional prostate cancers) including 11,385 cases and 18,322 

controls (7).  We examined a larger region around TERT-CLPTM1L than did Wang et al. (chr5: 

1,250,000-1,450,000), thus they did not assess rs12655062 and rs115960372 which lie outside of 

that region.  Our significant conditional ASSET associations between TERT SNPs rs7717443 

and rs10866498 and colorectal, prostate, ovarian, and lung cancer risk, which are not highly 

correlated with variants observed in Wang et al. have not been previously reported.  In summary, 

our study confirms the Wang et al. findings for three of the five significant TERT-CLPTM1L 

SNPs that they reported among European subjects (conditionally for rs2736098 and rs37004 

(r
2
=0.88 with rs13170453), and unconditionally for rs4449583); however, our study did not 

corroborate their findings for rs10069690 or rs13172201.  Additionally, in our study, of the six 

conditionally significant TERT-CLPTM1L risk loci detected among European subjects, Wang et 

al. did not report findings for SNPs rs7717443 and rs10866498 nor did they examine 

associations for SNPs rs12655062 and rs115960372 which lied outside of the regions that they 

evaluated.  Nonetheless, a Japanese fine-mapping study of 1,583 prostate cancer cases and 2,480 

controls reported a highly significant association with rs115960372, (OR=1.31, P-

value=7.76x10
-10

) which is in the LPCAT1 gene (49). The association between rs12655062, 

which is in the CTD-2194D22.4 gene, and colorectal, breast, and prostate cancer risk has not 

been previously reported.  

 

Because associations with cancer risk may vary by histology, some studies have assessed 

SNPs across TERT-CLPTMIL in relation to cancer subtypes.  Of particular interest were the lung 

cancer ASSET meta-analytic results reported by Wang et al. (50).  Based on data from five 

GWAS, highly significant associations were reported between TERT-CLPTMIL rs7717443 
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(OR=1.24, P-value=4.90x10
-10

), rs10866498 (OR=0.81, P-value=3.28x10
-11

) and rs37004 

(OR=0.78, P-value=2.52x10
-12

) and lung adenocarcinoma risk; an association between rs37004 

(OR=0.82, P-value=7.94x10
-8

) and squamous lung cancer risk was also observed.  In on our 

unconditional ASSET forest plot analysis, we observed similar associations between these 

variants and lung adenocarcinoma, but not with squamous lung cancer. 

     

The associations reported here for variants in the GAR1, TERF2, POT1 and RTEL1 gene 

regions and colorectal, lung, breast, ovarian, and/or prostate cancers have not been reported in 

GWAS of these cancers.  We advise caution in interpreting results for GAR1 and TERF2 variants 

with low MAF (0.3%).  Although these SNPs passed imputation accuracy cutoffs in some 

consortium-specific meta-analyses, SNPs with such low MAFs are known to be difficult to 

impute accurately.  The RTEL1 gene at 20p13.3 encodes a DNA helicase involved in 

stabilization, protection and elongation of telomeres (9,20).  This gene interacts with shelterin 

complex proteins and variants in this gene have been associated in previous GWAS with high-

grade glioma risk (37).  POT1 at 7q31.33 and TERF2 at 16q22.1 are protein-coding genes that 

are components of the shelterin complex (20,33).  Variants in POT1 have been previously 

associated with risk of chronic lymphocytic leukemia in GWAS (41).   

 

To our knowledge, this is the largest meta-analysis of GWAS data on telomere structure 

and maintenance genes and cancer risk.  With over 61,000 cancer cases and nearly 75,000 

controls, our study is highly powered to detect significant associations for variants with common 

allele frequencies.  Our study is unique in that we evaluated risk of multiple cancer types as well 

as risk of specific histologic or molecular subtypes of cancer and subtypes related to 
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aggressiveness.  Our subset-based meta-analysis also permitted us to examine the magnitude and 

direction of genetic associations allowing for heterogeneity of associations across cancer sites.  

Compared to traditional methods, ASSET helps minimize false-positives through multiple 

testing penalties and improves detection power (21).   We were able to determine independent 

associations between SNPs and cancer types by conditioning on the effects of SNPs with lower 

P-values. Because there is considerable evidence linking TERT-CLPTM1L variants to risk of 

many different cancer types, and several other telomere structure and maintenance genes have 

been implicated in GWAS of various cancer types, we used gene-level P-value thresholds to 

define statistical significance.  Although we were able to interrogate a very large number of 

SNPs in telomere structure and maintenance genes, we did not assess SNPs across all known 

telomere structure and maintenance genes, and most of the SNPs (97.5%) we examined were 

imputed.  Our study was not well-designed to examine imputed rare variants since these SNPs 

may be poorly represented or poorly tagged on genotyping arrays.  While we were able to use the 

available aggregate data to evaluate whether variation in all SNPs combined in each gene was 

associated with risk, we could not evaluate haplotypes.  

 

In summary, our results indicate that patterns of association in telomere structure and 

maintenance genes observed across cancer types and subtypes are complex.  These findings may 

provide insight into the mechanisms through which telomere dysfunction in different tissues 

influences cancer risk.  In our investigation, seven of the thirteen conditional associations 

identified were novel.  While we observed suggestive pleiotropic associations within the 

DCLRE1B, TERC, TERT-CLPTM1L, POT1 and RTEL1 gene regions, fine-mapping studies with 

the ability to assess haplotypes are needed to evaluate the relationship between alleles at different 
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loci in order to help identify potential variants that may have gone undetected.  Replication and 

mechanistic studies are also needed to help provide insight regarding the function and variability 

of risk across cancers for these telomere structure and maintenance SNPs. 
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Table 1. Characteristics of genome-wide association studies included in consortium-based meta-analyses of colorectal, breast, prostate, ovarian, and 

lung cancers  

Cancer Type/Subtype- 

Consortium 
Cases (N) 

Controls 

(N) 
GWAS (N) Genotyping Platform Covariates 

Colorectal- GECCO 10,314 12,857 13 Illumina 300/240S, 300K, 550K, 610K, 730K; 

Affymetrix 100K, 500K 
age, sex, PCA, center, 

batch effect
a
, smoking

b
 

    

 Colorectal- CORECT 5,100 4,831 6 Affeymetrix Axiom age, sex, PCA 

   Breast- DRIVE 15,748 18,084 11 llumina 240K/317K/370K/550K/610K/610K 

+Cyto12/660K/670K/1.2M; Affymetrix 5.0/6.0     

age, PCA 

     ER- negative 4,939 13,128 8 age, PCA 

 Prostate- ELLIPSE 14,160 12,724 6 Illumina 550K/610K/2.5M/iSELECT; Affymetrix 

GeneChip 5.0 

age, study 

     Aggressive 4,450 12,724 6 age, study, PCA 

 Ovarian- FOCI 4,369 9,123 3 Illumina 317K/370K/550K/610K/670K/2.5M site, PCA, age 

     Endometrioid 715 9,123 3 

 

site, PCA, age 

     Serous 2,556 9,123 3 

 

site, PCA, age 

      Lung- TRICL 12,160 16,838 6 Illumina 317K/370K/550K/610K age, sex, PCA 

     Adenocarcinoma 3,718 15,871 6 

 

age, sex, PCA 

     Squamous 3,422 16,015 6 

 

age, sex, PCA 

            

     Total 61,851 74,457 45 

    

Abbreviations: CORECT- ColoRectal Transdisciplinary Study; DRIVE- Discovery, Biology, and Risk of Inherited Variants in Breast Cancer; ELLIPSE- 

Elucidating Loci Involved in Prostate Cancer Susceptibility; ER-estrogen receptor; FOCI- Follow-up of Ovarian Cancer Genetic Association and Interaction 

Studies; GWAS- genome wide association studies; N- number; PCA- principal components analysis; TRICL- Transdisciplinary Research in Cancer of the 

Lung. 
a
Adjusted for batch effect only in the Association STudy Evaluating RISK for Sporadic Colorectal Cancer (ASTERISK) study 

b
Adjusted for smoking only in the Physician's Health Study (PHS) 
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Table 2. Unconditional ASSET two-sided meta-analysis results across five cancer types
a
 

Gene (Chr.)  Ref: 

MA 

MAF Combined  Positively Associated  Inversely Associated  Cancer types 

 SNP Position P-value OR (95% CI) P-value OR (95% CI) P-value  Positively  

Associated 

Negatively 

Associated 

DCLRE1B (Chr. 1) 

 rs974404 114382025 T:G 0.449 9.19E-06
e
 1.04 (1.01-1.07) 2.47E-02

f
 0.94 (0.91-0.97) 2.43E-05

e
 Breast, Ovarian Prostate, Lung 

 rs7523862
b
 114443419 G:A 0.379 1.09E-05

e
   0.94 (0.91-0.97) 1.17E-05

e
  Prostate, Lung 

 rs12144215 114187155 G:T 0.131 1.50E-05
e
   0.90 (0.87-0.94) 2.11E-06

e
  Colorectal, Prostate 

 

TERC (Chr. 3) 

 rs80304993 170097606 G:A 0.230 6.54E-15
e
   0.82 (0.78-0.86) 1.51E-15

e
  Prostate 

 rs71277158 169999216 T:G 0.162 8.88E-15
e
   0.80 (0.76-0.84) 3.64E-16

e
  Prostate 

 rs76925190 170066339 A:C 0.173 1.25E-14
e
   0.80 (0.76-0.84) 6.27E-16

e
  Prostate 

 rs75982374 170063227 A:G 0.140 4.65E-13
e
   0.79 (0.74-0.84) 2.62E-14

e
  Prostate 

 rs55953261 170121598 G:A 0.488 4.58E-09
e
   0.89 (0.85-0.92) 3.57E-09

e
  Prostate 

 rs77085460 170127536 A:G 0.063 7.30E-09
e
   0.76 (0.70-0.83) 3.81E-10

e
  Prostate 

 rs59758024
c
 170119352 A:T 0.447 9.03E-09

e
 1.12 (1.08-1.17) 7.08E-09

e
   Prostate  

 rs75316749 168761423 A:G 0.041 1.38E-06
e
 1.14 (1.08-1.20) 1.38E-06

e
   Colorectal, Breast, 

Ovarian, Lung 

 

 rs75313056 170017609 G:A 0.082 1.51E-08
e
   0.80 (0.74-0.86) 9.54E-10

e
  Prostate 

 rs12487040 170103592 T:C 0.372 1.70E-08
e
 1.05 (1.01-1.09) 2.46E-02

f
 0.89 (0.85-0.93) 3.13E-08

e
 Breast, Ovarian Prostate 

 rs10804842 170135700 T:C 0.234 1.73E-08
e
   0.86 (0.82-0.90) 1.94E-09

e
  Prostate 

 rs969217 170159134 C:T 0.391 2.73E-07
e
 1.06 (1.02-1.11) 2.62E-03 0.90 (0.87-0.94) 5.47E-06

e
 Breast Prostate 

 rs77964281 169916180 T:C 0.117 3.49E-07
e
   0.85 (0.80-0.90) 2.65E-08

e
  Prostate 

 rs62293480 170106672 G:T 0.388 1.35E-06
e
   0.89 (0.84-0.93) 5.97E-07

e
  Prostate 

 rs10936633 170158128 G:A 0.493 1.49E-06
e
   0.90 (0.87-0.94) 7.74E-07

e
  Prostate 

 rs9865021 170146881 C:T 0.487 2.48E-06
e
 1.10 (1.06-1.14) 2.11E-06

e
   Prostate  

 rs74677551 168861788 T:G 0.032 3.20E-06
e
 1.15 (1.08-1.22) 3.20E-06

e
   Colorectal, Breast, 

Prostate, Ovarian, 

Lung 

 

 rs9809168 168803900 T:C 0.033 1.20E-05
e
 1.15 (1.08-1.22) 1.20E-05

e
   Colorectal, Breast, 

Ovarian, Lung 

 

 rs2901621 170057704 G:C 0.098 1.77E-05
e
   0.93 (0.91-0.96) 3.52E-06

e
  Colorectal, Prostate 
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GAR1 (Chr. 4) 

 rs17042238
d
 111745854 A:G 0.003 6.33E-06

e
   0.04 (0.01-0.16) 6.33E-06

e
  Prostate 

 

TERT-CLPTM1L (Chr. 5) 

 rs37004
b
 1356684 C:T 0.239 2.27E-11

e
   0.84 (0.81-0.88) 1.29E-12

e
  Lung 

 rs37005
b
 1356450 C:T 0.460 1.98E-10

e
   0.87 (0.84-0.91) 9.85E-12

e
  Lung 

 rs3816659
b
 1317820 G:A 0.441 2.44E-10

e
   0.88 (0.85-0.91) 9.97E-12

e
  Lung 

 rs2736100
b
 1286516 C:A 0.500 3.38E-10

e
 1.05 (1.01-1.09) 1.72E-02

f
 0.90 (0.86-0.93) 7.54E-10

e
 Colorectal, Prostate Lung 

 rs7725218
b
 1282414 G:A 0.359 3.02E-09

e
 1.12 (1.07-1.17) 3.14E-07

e
 0.90 (0.85-0.96) 4.04E-04 Lung Prostate 

 rs35953391
b
 1312329 C:T 0.201 6.44E-09

e
   0.87 (0.83-0.91) 1.43E-09

e
  Lung 

 rs2735940
b
 1296486 G:A 0.499 7.44E-09

e
 1.09 (1.05-1.14) 1.91E-05 0.93 (0.90-0.96) 1.70E-05 Lung Colorectal, Prostate 

 rs2736099
b
 1287340 G:A 0.344 8.62E-09

e
 1.12 (1.08-1.17) 1.75E-07

e
 0.95 (0.92-0.98) 2.18E-03 Lung Colorectal, Breast, 

Prostate 

 rs35029535 1284976 C:T 0.352 5.54E-08
e
 1.09 (1.03-1.15) 2.09E-03 0.92 (0.89-0.95) 1.28E-06

e
 Prostate Breast, Ovarian, 

Lung 

 rs7713218 1283312 G:A 0.497 5.78E-08
e
 1.10 (1.06-1.14) 6.60E-07

e
 0.95 (0.91-0.98) 4.23E-03 Ovarian, Lung Colorectal, Prostate 

 rs10866498 1285162 C:T 0.472 6.36E-08
e
 1.05 (1.01-1.09) 6.76E-03 0.91 (0.88-0.94) 4.57E-07

e
 Colorectal, 

Prostate 

Ovarian, Lung 

 rs2735948
b
 1299213 G:A 0.418 7.70E-08

e
   0.88 (0.85-0.92) 5.56E-09

e
  Lung 

 rs36019446 1339890 A:G 0.484 1.57E-07
e
   0.88 (0.85-0.92) 1.05E-08

e
  Lung 

 rs2736098
b
 1294086 C:T 0.234 2.48E-07

e
 1.08 (1.04-1.12) 1.81E-04 0.93 (0.90-0.97) 7.16E-05 Prostate, Lung Colorectal, Breast, 

Ovarian 

 rs7717443 1283486 C:T 0.483 5.37E-07
e
 1.10 (1.06-1.14) 2.24E-06

e
 0.95 (0.91-0.989) 1.31E-02

f
 Ovarian, Lung Colorectal, Prostate 

 rs115960372 1518494 C:T 0.104 6.94E-07
e
 1.19 (1.1-1.27) 2.97E-06

e
 0.90 (0.83-0.98) 1.29E-02

f
 Prostate Lung 

 rs2735944
b
 1304432 C:T 0.132 1.27E-06

e
   0.85 (0.80-0.90) 1.38E-07

e
  Lung 

 rs2853677
b
 1287194 A:G 0.400 1.33E-06

e
 1.11 (1.06-1.16) 1.54E-06

e
 0.97 (0.93-1.000) 4.99E-02

f
 Lung Colorectal, Breast, 

Prostate 

 rs12655062 1890877 G:A 0.354 1.65E-06
e
 1.12 (1.06-1.18) 3.53E-05 0.95 (0.92-0.98) 2.72E-03 Prostate Colorectal, Ovarian 

 rs2736109
b
 1296759 C:T 0.392 2.99E-06

e
 1.11 (1.06-1.16) 5.88E-06

e
 0.96 (0.93-0.996) 3.08E-02

f
 Lung Colorectal, Breast, 

Ovarian 

 rs33961405
b
 1277577 A:G 0.491 1.20E-05

e
 1.11 (1.06-1.16) 4.55E-06

e
   Lung  

 rs55901723 1342154 T:C 0.232 2.14E-05   0.88 (0.84-0.93) 2.94E-06
e
  Lung 

 rs6861230 304003 T:C 0.042 2.70E-05 1.25 (1.13-1.37) 5.83E-06
e
   Breast, Ovarian  
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POT1 (Chr. 7) 

 rs116895242 123946403 T:A 0.041 5.21E-05   0.83 (0.77-0.90) 6.99E-06
e
  Colorectal, Ovarian, 

Lung 

 rs74986217 123465182 A:C 0.041 2.54E-04
e
 1.31 (1.16-1.48) 2.17E-05

e
   Ovarian  

 

TERF2 (Chr. 16) 

 rs117496043
c
 69590365 C:T 0.003 4.28E-05 1.66 (1.33-2.06) 6.14E-06

e
   Prostate  

 

RTEL1 (Chr. 20) 

 rs34978822
c
 62291599 C:G 0.015 2.14E-05   0.71 (0.62-0.82) 3.17E-06

e
  Prostate, Lung 

 rs114220381
c
 61477960 T:A 0.048 1.21E-04 1.31 (1.16-1.48) 1.13E-05

e
   Prostate  

Abbreviations: Chr.- chromosome; CI- confidence interval; MA- Minor Allele; OR- odds ratio; Ref- reference; SNP- single nucleotide polymorphism. 
a
 Results are presented for SNPs after pruning at r

2
<0.70. 

b 
SNPs that are directly measured and not imputed. 

c
 ASSET meta-analytical results for these SNPs are based on 4 cancer types rather than all 5 studies. 

d 
ASSET meta-analytical results for these SNPs are based on 2 cancer types rather than all 5 studies. 

e 
Gene level P-value thresholds based on the number of effective tests are: DCLER1B P-value<2.65x10-5; TERC P-value<2.45x10-5; GAR1 P-value<2.44x10-5; 

TERT-CLPTM1 P-value<1.32x10-5; POT1 P-value<2.94x10-5; TERF2 P-value<3.08x10-5; RTEL1 P-value<1.86x10-5. 
f
 Positive or negative associations with P-values between 0.01 and 0.05 are considered to be suggestive. 
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Table 3. Unconditional and conditional ASSET two-sided meta-analysis results across five cancer types 

  Unconditional Results  Conditional Results 

Gene (Chr.) Combined Positively Associated Inversely Associated 
Cancer types 

Combined Positively Associated Inversely Associated 

 SNP P-value OR      

(95% CI) P-value 

OR       

(95% CI) P-value 

Positively 

Associated 

Negatively 

Associated 

P-value OR  

(95% CI) P-value 

OR  

(95% CI) P-value 

DCLRE1B (Chr. 1) 

rs974404
a
 9.19e-06

b
 1.04         

(1.01-1.07) 2.47E-02
c
 

0.94           

(0.91-0.97) 2.43E-05
b
 

Breast, 

Ovarian 

Prostate, 

Lung 

     

rs12144215 1.50E-05
b
   0.90           

(0.87-0.94) 2.11E-06
b
 Lung

d
 

Colorectal, 

Breast
d
, 

Prostate 

2.07E-05
b
 1.05          

(1.004-1.11) 3.31E-02
c
 

0.93      

(0.90-0.96) 4.33E-05 

TERC (Chr. 3) 

rs80304993
a
 6.54E-15

b
   0.82           

(0.78-0.86) 1.51E-15
b
 

 
Prostate 

     

rs62293480 1.35E-06
b
   0.89            

(0.84-0.93) 5.97E-07
b
 

 
Prostate 

2.16E-13
b
   0.84      

(0.81-0.88) 1.44E-14
b
 

rs75316749 1.38E-06
b
 1.14      

(1.08-1.20) 1.38E-06
b
 

  Colorectal,  

Breast, 

Ovary, Lung 

 1.46E-06
b
 1.14            

(1.08-1.20) 1.46E-06
b
 

  

TERT-CLPTM1L (Chr. 5) 

rs37004
a,e

 2.27E-11
b
   0.84             

(0.81-0.88) 1.29E-12
b
 

 
Lung 

     

rs7717443 5.37E-07
b
 1.10        

(1.06-1.14) 2.24E-06
b
 

0.95          

(0.91-0.99) 1.31E-02
c
 

Ovary, 

Lung 

Colorectal, 

Prostate 

1.26E-07
b
 1.11        

(1.06-1.15) 5.31E-07
b
 

0.95         

(0.91-0.990) 1.19E-02
c
 

rs10866498 6.36E-08
b
 1.05        

(1.01-1.09) 6.76E-03 

0.91            

(0.88-0.94) 4.57E-07
b
 

Colorectal, 

Prostate 

Ovary, Lung 9.27E-18
b
 1.07         

(1.03-1.10) 4.01E-05 

0.88        

(0.85-0.91) 5.25E-15
b
 

rs12655062 1.65E-06
b
 1.12        

(1.06-1.18) 3.53E-05 

0.95            

(0.92-0.98) 2.72E-03 
Prostate 

Colorectal, 

Ovarian 

1.13E-06
b
 1.12       

(1.06-1.18) 2.67E-05 

0.95        

(0.92-0.98) 2.42E-03 

rs115960372 6.94E-07
b
 1.19        

(1.10-1.27) 2.97E-06
b
 

0.90               

(0.83-0.98) 1.29E-02
c
 

Prostate Lung 
3.12E-06

b
 1.17        

(1.09-1.26) 1.20E-05
b
 

0.91        

(0.84-0.98) 1.57E-02
c
 

rs2736098
e
 2.48E-07

b
 1.08        

(1.04-1.12) 1.81E-04 

0.93            

(0.90-0.97) 7.16E-05 
Prostate, 

Lung 

Colorectal, 

Breast, 

Ovarian 

5.36E-06
b
 1.08      

(1.02-1.14) 1.23E-02
c
 

0.93       

(0.91-0.96) 2.74E-05 

POT1 (Chr. 7) 

rs116895242 5.21E-05   0.83           

(0.77-0.90) 6.99E-06
b
 

 Colorectal, 

Ovarian, 

Lung 

     

RTEL1 (Chr. 20) 

rs34978822
f
 2.14E-05 

  

0.71          

(0.62-0.82) 3.17E-06
b
 

 

Prostate, 

Lung 
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Abbreviations: Chr.- chromosome; CI- confidence interval; OR- odds ratio; SNP- single nucleotide polymorphism. 
a 
The most significant SNP is always conditioned on in the sequential conditional analysis (and therefore there are no conditional results for it) 

b
 Gene level P-value thresholds based on the number of effective tests are: DCLER1B P<2.65x10-5; TERC P<2.45x10-5; TERT-CLPTM1 P<1.32x10-5; POT1 P-

value<2.94x10-5; RTEL1 P-value<1.86x10-5. 
c
 Positive or inverse associations with P-values between 0.01 and 0.05 are considered to be suggestive. 

d
 Associations with phenotypes were statistically significant in conditional analyses only 

e
 SNPs that are directly measured and not imputed. 

f
 ASSET meta-analytical results for these SNPs are based on 4 cancer types rather than all 5 studies. 
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Legend to Figures 

Figure 1. Unconditional ASSET forest plots by cancer type and subtype for TERC SNPs 

rs80304993, rs62293480, and rs75316749.  

(A) Forest plot associations for the A allele for rs80304993. (B) Forest plot associations for the T 

allele for rs62293480. (C) Forest plot associations for the G allele for rs75316749. 

 

Figure 2. Unconditional ASSET forest plots by cancer type and subtype for TERT-CLPTM1L 

SNPs rs37004, rs7717443, rs10866498, rs12655062, rs115960372, and rs2736098.  

(A) Forest plot associations for the T allele for rs37004. (B) Forest plot associations for the T 

allele for rs7717443. (C) Forest plot associations for the T allele for rs10866498. (D) Forest plot 

associations for the A allele for rs12655062. (E) Forest plot associations for the T allele for 

rs115960372. (F) Forest plot associations for the T allele for rs2736098.  

 

Figure 3. Unconditional ASSET forest plots by cancer type and subtype for DCLRE1B SNPs 

rs974404 and rs12144215.  

(A) Forest plot associations for the G allele for rs974404. (B) Forest plot associations for the T 

allele for rs12144215. 

 

Supplementary Figure 1. Manhattan plot of associations between 204,993 SNPs in telomere 

structure and maintenance genes and five cancer types.  



52 
 

The dotted line indicates the genome-wide significance level (P-value=5x10
-8

), and the 

individual solid lines indicate the gene-level P-value cutoffs taking into account the number of 

effective tests. Genes are evaluated in the order listed in the key.  

 

Supplementary Figure 2. TERT-CLPTM1L and TERC LD plots for statistically significant 

ASSET variants that were retained following LD pruning at r
2
>0.70.   

Associations between alleles across variants are based on CGEMS and EAGLE datasets. SNPs 

circled in black are variants identified as statistically significant in ASSET conditional analyses. 

a
SNPs identified as statistically significant in ASSET conditional analyses in the Wang et al. 

study among individuals of European ancestry [7]. A) LD plot for TERT-CLPTM1L variants. B) 

LD plot for TERC variant. 


