10,083 research outputs found
Recommended from our members
The structural organization and protein composition of lens fiber junctions.
The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined
Does treating obesity stabilize chronic kidney disease?
BACKGROUND: Obesity is a growing health issue in the Western world. Obesity, as part of the metabolic syndrome adds to the morbidity and mortality. The incidence of diabetes and hypertension, two primary etiological factors for chronic renal failure, is significantly higher with obesity. We report a case with morbid obesity whose renal function was stabilized with aggressive management of his obesity. CASE REPORT: A 43-year old morbidly obese Caucasian male was referred for evaluation of his chronic renal failure. He had been hypertensive with well controlled blood pressure with a body mass index of 46 and a baseline serum creatinine of 4.3 mg/dl (estimated glomerular filtration rate of 16 ml/min). He had failed all conservative attempts at weight reduction and hence was referred for a gastric by-pass surgery. Following the bariatric surgery he had approximately 90 lbs. weight loss over 8-months and his serum creatinine stabilized to 4.0 mg/dl. CONCLUSION: Obesity appears to be an independent risk factor for renal failure. Targeting obesity is beneficial not only for better control of hypertension and diabetes, but also possibly helps stabilization of chronic kidney failure
Rates of Return: What are 16-17 year-olds doing?
This report documents the secondary analysis of a randomly sampled nationally representative British survey in an attempt to understand the occupations British 16 and 17 year olds were engaged in, both those remaining in and those who had left school. Both descriptive and analytical statistics are used in answering the question and each serve to describe the trends and patterns behind these young people’s behaviour. First, the patterns of economic activity and inactivity 16 and 17 year olds are engaged in are laid out. Secondly, there is then a deeper examination of what those economically active young people actually do as well as how consistently they do it and how much they earn. Additionally within both these steps, systematic differences are looked for in an attempt to glean more detailed information about what type of young person might be engaged in certain activities
Feature Selection of Post-Graduation Income of College Students in the United States
This study investigated the most important attributes of the 6-year
post-graduation income of college graduates who used financial aid during their
time at college in the United States. The latest data released by the United
States Department of Education was used. Specifically, 1,429 cohorts of
graduates from three years (2001, 2003, and 2005) were included in the data
analysis. Three attribute selection methods, including filter methods, forward
selection, and Genetic Algorithm, were applied to the attribute selection from
30 relevant attributes. Five groups of machine learning algorithms were applied
to the dataset for classification using the best selected attribute subsets.
Based on our findings, we discuss the role of neighborhood professional degree
attainment, parental income, SAT scores, and family college education in
post-graduation incomes and the implications for social stratification.Comment: 14 pages, 6 tables, 3 figure
Glue ear, hearing loss and IQ:an association moderated by the child's home environment
BACKGROUND: Glue ear or otitis media with effusion (OME) is common in children and may be associated with hearing loss (HL). For most children it has no long lasting effects on cognitive development but it is unclear whether there are subgroups at higher risk of sequelae. OBJECTIVES: To examine the association between a score comprising the number of times a child had OME and HL (OME/HL score) in the first four/five years of life and IQ at age 4 and 8. To examine whether any association between OME/HL and IQ is moderated by socioeconomic, child or family factors. METHODS: Prospective, longitudinal cohort study: the Avon Longitudinal Study of Parents and Children (ALSPAC). 1155 children tested using tympanometry on up to nine occasions and hearing for speech (word recognition) on up to three occasions between age 8 months and 5 years. An OME/HL score was created and associations with IQ at ages 4 and 8 were examined. Potential moderators included a measure of the child's cognitive stimulation at home (HOME score). RESULTS: For the whole sample at age 4 the group with the highest 10% OME/HL scores had performance IQ 5 points lower [95% CI -9, -1] and verbal IQ 6 points lower [95% CI -10, -3] than the unaffected group. By age 8 the evidence for group differences was weak. There were significant interactions between OME/HL and the HOME score: those with high OME/HL scores and low 18 month HOME scores had lower IQ at age 4 and 8 than those with high OME/HL scores and high HOME scores. Adjusted mean differences ranged from 5 to 8 IQ points at age 4 and 8. CONCLUSIONS: The cognitive development of children from homes with lower levels of cognitive stimulation is susceptible to the effects of glue ear and hearing loss
Angiotensin II receptor blockade alleviates calcineurin inhibitor nephrotoxicity by restoring cyclooxygenase 2 expression in kidney cortex
Aim: The use of calcineurin inhibitors such as cyclosporine A (CsA) for immunosuppression after solid organ transplantation is commonly limited by renal side effects. CsA-induced deterioration of glomerular filtration rate and sodium retention may be related to juxtaglomerular dysregulation as a result of suppressed cyclooxygenase 2 (COX-2) and stimulated renin biosynthesis. We tested whether CsA-induced COX-2 suppression is caused by hyperactive renin-angiotensin system (RAS) and whether RAS inhibition may alleviate the related side effects. Methods: Rats received CsA, the RAS inhibitor candesartan, or the COX-2 inhibitor celecoxib acutely (3 days) or chronically (3 weeks). Molecular pathways mediating effects of CsA and RAS on COX-2 were studied in cultured macula densa cells. Results: Pharmacological or siRNA-mediated calcineurin inhibition in cultured cells enhanced COX-2 expression via p38 mitogen-activated protein kinase and NF-kB signalling, whereas angiotensin II abolished these effects. Acute and chronic CsA administration to rats led to RAS activation along with reduced cortical COX-2 expression, creatinine clearance and fractional sodium excretion. Evaluation of major distal salt transporters, NKCC2 and NCC, showed increased levels of their activating phosphorylation upon CsA. Concomitant candesartan treatment blunted these effects acutely and completely normalized the COX-2 expression and renal functional parameters at long term. Celecoxib prevented the candesartan-induced improvements of creatinine clearance and sodium excretion. Conclusion: Suppression of juxtaglomerular COX-2 upon CsA results from RAS activation, which overrides the cell-autonomous, COX-2-stimulatory effects of calcineurin inhibition. Angiotensin II antagonism alleviates CsA nephrotoxicity via the COX-2-dependent normalization of creatinine clearance and sodium excretion
The Thalamus and Brainstem Act As Key Hubs in Alterations of Human Brain Network Connectivity Induced by Mild Propofol Sedation
Despite their routine use during surgical procedures, no consensus has yet been reached on the precise mechanisms by which hypnotic anesthetic agents produce their effects. Molecular, animal and human studies have suggested disruption of thalamocortical communication as a key component of anesthetic action at the brain systems level. Here, we used the anesthetic agent, propofol, to modulate consciousness and to evaluate differences in the interactions of remote neural networks during altered consciousness. We investigated the effects of propofol, at a dose that produced mild sedation without loss of consciousness, on spontaneous cerebral activity of 15 healthy volunteers using functional magnetic resonance imaging (fMRI), exploiting oscillations (<0.1 Hz) in blood oxygenation level-dependent signal across functionally connected brain regions. We considered the data as a graph, or complex network of nodes and links, and used eigenvector centrality (EC) to characterize brain network properties. The EC mapping of fMRI data in healthy humans under propofol mild sedation demonstrated a decrease of centrality of the thalamus versus an increase of centrality within the pons of the brainstem, highlighting the important role of these two structures in regulating consciousness. Specifically, the decrease of thalamus centrality results from its disconnection from a widespread set of cortical and subcortical regions, while the increase of brainstem centrality may be a consequence of its increased influence, in the mildly sedated state, over a few highly central cortical regions key to the default mode network such as the posterior and anterior cingulate cortices
Spread Supersymmetry
In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan
and environmental constraints on the dark matter density may exclude a large
range of \tilde{m} from the reheating temperature after inflation down to
values that yield a LSP mass of order a TeV. After selection effects, the
distribution for \tilde{m} may prefer larger values. A single environmental
constraint from dark matter can then lead to multi-component dark matter,
including both axions and the LSP, giving a TeV-scale LSP lighter than the
corresponding value for single-component LSP dark matter.
If SUSY breaking is mediated to the SM sector at order X^* X, only squarks,
sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino
mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed
by a further loop factor. This Spread SUSY spectrum has two versions; the
Higgsino masses are generated in one from supergravity giving a wino LSP and in
the other radiatively giving a Higgsino LSP. The environmental restriction on
dark matter fixes the LSP mass to the TeV domain, so that the squark and
slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study
the spectrum, dark matter and collider signals of these two versions of Spread
SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in
cosmic rays arise from dark matter annihilations in the halo; exotic short
charged tracks occur at the LHC, at least for the wino LSP; and there are the
eventual possibilities of direct detection of dark matter and detailed
exploration of the TeV-scale states at a future linear collider. Gauge coupling
unification is as in minimal SUSY theories.
If SUSY breaking is mediated at order X, a much less hierarchical spectrum
results---similar to that of the MSSM, but with the superpartner masses 1--2
orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure
Guided Wave Damage Characterization via Minimum Variance Imaging with a Distributed Array of Ultrasonic Sensors
Guided wave imaging with a distributed array of inexpensive transducers offers a fast and cost-efficient means for damage detection and localization in plate-like structures such as aircraft and spacecraft skins. As such, this technology is a natural choice for inclusion in condition-based maintenance and integrated structural health management programs. One of the implementation challenges results from the complex interaction of propagating ultrasonic waves with both the interrogation structure and potential defects or damage. For example, a guided ultrasonic wave interacts with a surface or sub-surface defect differently depending on the angle of incidence, defect size and orientation, excitation frequency, and guided wave mode. However, this complex interaction also provides a mechanism for guided wave imaging algorithms to perform damage characterization in addition to damage detection and localization. Damage characterization provides a mechanism to help discriminate actual damage (e.g. fatigue cracks) from benign changes, and can be used with crack propagation models to estimate remaining life. This work proposes the use of minimum variance imaging to perform damage detection, localization, and characterization. Scattering assumptions used to perform damage characterization are obtained through both analytical and finite element models. Experimental data from an in situ distributed array are used to demonstrate feasibility of this approach using a through-hole and two through-thickness notches of different orientations to simulate damage in an aluminum plate
Using Social Media to Promote STEM Education: Matching College Students with Role Models
STEM (Science, Technology, Engineering, and Mathematics) fields have become
increasingly central to U.S. economic competitiveness and growth. The shortage
in the STEM workforce has brought promoting STEM education upfront. The rapid
growth of social media usage provides a unique opportunity to predict users'
real-life identities and interests from online texts and photos. In this paper,
we propose an innovative approach by leveraging social media to promote STEM
education: matching Twitter college student users with diverse LinkedIn STEM
professionals using a ranking algorithm based on the similarities of their
demographics and interests. We share the belief that increasing STEM presence
in the form of introducing career role models who share similar interests and
demographics will inspire students to develop interests in STEM related fields
and emulate their models. Our evaluation on 2,000 real college students
demonstrated the accuracy of our ranking algorithm. We also design a novel
implementation that recommends matched role models to the students.Comment: 16 pages, 8 figures, accepted by ECML/PKDD 2016, Industrial Trac
- …