29 research outputs found

    Re-infection with a different SARS-CoV-2 clade and prolonged viral shedding in a hematopoietic stem cell transplantation patient

    Get PDF
    Immunocompromised patients who have a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection pose many clinical and public health challenges. We describe the case of a hematopoietic stem cell transplantation patient with lymphoma who had a protracted illness requiring three consecutive hospital admissions. Whole genome sequencing confirmed two different SARS-CoV-2 clades. Clinical management issues and the unanswered questions arising from this case are discussed

    Genetic Predisposition of Donors Affects the Allograft Outcome in Kidney Transplantation; Polymorphisms of Stromal-Derived Factor-1 and CXC Receptor 4

    Get PDF
    Genetic interaction between donor and recipient may dictate the impending responses after transplantation. In this study, we evaluated the role of the genetic predispositions of stromal-derived factor-1 (SDF1) [rs1801157 (G>A)] and CXC receptor 4 (CXCR4) [rs2228014 (C>T)] on renal allograft outcomes. A total of 335 pairs of recipients and donors were enrolled. Biopsy-proven acute rejection (BPAR) and long-term graft survival were traced. Despite similar allele frequencies between donors and recipients, minor allele of SDF1 rs1801157 (GA+AA) from donor, not from recipients, has a protective effect on the development of BPAR compared to wild type donor (GG) (P = 0.005). Adjustment for multiple covariates did not affect this result (odds ratio 0.39, 95% C.I 0.20–0.76, P = 0.006). CXCR4 rs2228014 polymorphisms from donor or recipient did not affect the incidence of acute rejection. SDF1 was differentially expressed in renal tubular epithelium with acute rejection according to genetic variations of donor rs1801157 showing higher expressions in the grafts from GG donors. Contrary to the development of BPAR, the presence of minor allele rs1801157 A, especially homozygocity, predisposed poor graft survival (P = 0.001). This association was significant after adjusting for several risk factors (hazard ratio 3.01; 95% C.I = 1.19–7.60; P = 0.020). The allelic variation of recipients, however, was not associated with graft loss. A donor-derived genetic polymorphism of SDF1 has influenced the graft outcome. Thus, the genetic predisposition of donor should be carefully considered in transplantation

    Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging.

    Get PDF
    Fluorescence microscopy is used extensively in cell-biological and biomedical research, but it is often plagued by three major problems with the presently available fluorescent probes: photobleaching, blinking, and large size. We have addressed these problems, with special attention to single-molecule imaging, by developing biocompatible, red-emitting silicon nanocrystals (SiNCs) with a 4.1-nm hydrodynamic diameter. Methods for producing SiNCs by simple chemical etching, for hydrophilically coating them, and for conjugating them to biomolecules precisely at a 1:1 ratio have been developed. Single SiNCs neither blinked nor photobleached during a 300-min overall period observed at video rate. Single receptor molecules in the plasma membrane of living cells (using transferrin receptor) were imaged for ≥10 times longer than with other probes, making it possible for the first time to observe the internalization process of receptor molecules at the single-molecule level. Spatial variations of molecular diffusivity in the scale of 1-2 µm, i.e., a higher level of domain mosaicism in the plasma membrane, were revealed

    Electrocatalytic CO<sub>2</sub> Reduction: From Homogeneous Catalysts to Heterogeneous-Based Reticular Chemistry

    No full text
    CO2, emitted mainly from fossil fuel combustion, is one of the major greenhouse gases. CO2 could be converted into more valuable chemical feedstocks including CO, HCOOH, HCHO, CH3OH, or CH4. To reduce CO2, catalysts were designed and their unique characteristics were utilized based on types of reaction processes, including catalytic hydrogenation, complex metal hydrides, photocatalysis, biological reduction, and electrochemical reduction. Indeed, the electroreduction method has received much consideration lately due to the simple operation, as well as environmentally friendly procedures that need to be optimized by both of the catalysts and the electrochemical process. In the past few decades, we have witnessed an explosion in development in materials science&#8212;especially in regards to the porous crystalline materials based on the strong covalent bond of the organic linkers containing light elements (Covalent organic frameworks, COFs), as well as the hybrid materials that possess organic backbones and inorganic metal-oxo clusters (Metal-organic frameworks, MOFs). Owing to the large surface area and high active site density that belong to these tailorable structures, MOFs and COFs can be applied to many practical applications, such as gas storage and separation, drug release, sensing, and catalysis. Beyond those applications, which have been abundantly studied since the 1990s, CO2 reduction catalyzed by reticular and extended structures of MOFs or COFs has been more recently turned to the next step of state-of-the-art application. In this perspective, we highlight the achievement of homogeneous catalysts used for CO2 electrochemical conversion and contrast it with the advances in new porous catalyst-based reticular chemistry. We then discuss the role of new catalytic systems designed in light of reticular chemistry in the heterogeneous-catalyzed reduction of CO2
    corecore