6,824 research outputs found

    Fast physical models for Si LDMOS power transistor characterization

    Get PDF
    A new nonlinear, process-oriented, quasi-two-dimensional (Q2D) model is described for microwave laterally diffused MOS (LDMOS) power transistors. A set of one-dimensional energy transport equations are solved across a two-dimensional cross-section in a “current-driven” form. The model accounts for avalanche breakdown and gate conduction, and accurately predicts DC and microwave characteristics at execution speeds sufficiently fast for circuit simulation applications

    Low-latency vision-based fiducial detection and localisation for object tracking

    Full text link
    Real-time vision systems are widely-used in construction and manufacturing industries. A significant proportion of computational resources of such systems is used in fiducial identification and localisation for motion tracking of moving targets. The requirement is to localise a pattern in an image captured by the vision system precisely, accurately, and with a minimum available computation time. As such, this paper presents a class of patterns and, accordingly, proposes an algorithm to fulfil the requirement. Here, the patterns are designed using circular patches of concentric circles to increase the probability of detection and reduce cases of false detection. In the detection algorithm, the image captured by the vision system is first scaled down for computationally-effective processing. The scaled image is then separated by filtering only the colour components, which are made up of outer circular patches in the proposed pattern. A blob detection algorithm is then implemented for identifying inner circular patches. The inner circles are then localised in the image by using the colour information obtained. Finally, the localised pattern, along with the camera and distortion matrix of the vision system, is applied in a perspective-n-point solving algorithm to estimate the marker orientation and position in the global coordinate system. Our system shows significant enhancement in performance of fiducial detection and identification and achieves the required latency of less than ten milliseconds. Thus, it can be used for infrastructure monitoring in many applications that involve high-speed real-time vision systems

    A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Network

    Full text link
    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN.Comment: 14 pages, 7 figures, 2 table

    Roboteye technology for thermal target tracking using predictive control

    Full text link
    © ISARC 2018 - 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things. All rights reserved. Thermal cameras are widely used in the fatigue analysis of mechanical structures using the thermoelastic effect. Nevertheless, such analysis is hampered due to blurry images resulting from the motion of structure-under-test. To address the issue this paper presents a system that utilizes robotic vision and predictive control. The system comprises of a thermal camera, a vision camera, a RobotEye, and a fiducial detection system. A marker is attached to a thermal target in order to estimate its position and orientation using the proposed detection system. To predict the future position of the thermal moving object, a Kalman filter is used. Finally, the Model Predictive Control (MPC) approach is applied to generate commands for the robot to follow the target. Results of the tracking by MPC are included in this paper along with the performance evaluation of the whole system. The evaluation clearly shows the improvement in the tracking performance of the development for thermal structural analysis

    Predicting users' first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness

    Get PDF
    Users make lasting judgments about a website's appeal within a split second of seeing it for the first time. This first impression is influential enough to later affect their opinions of a site's usability and trustworthiness. In this paper, we demonstrate a means to predict the initial impression of aesthetics based on perceptual models of a website's colorfulness and visual complexity. In an online study, we collected ratings of colorfulness, visual complexity, and visual appeal of a set of 450 websites from 548 volunteers. Based on these data, we developed computational models that accurately measure the perceived visual complexity and colorfulness of website screenshots. In combination with demographic variables such as a user's education level and age, these models explain approximately half of the variance in the ratings of aesthetic appeal given after viewing a website for 500ms only.Engineering and Applied Science

    Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release

    Get PDF
    A crucial early wound response is the recruitment of inflammatory cells drawn by danger cues released by the damaged tissue. Hydrogen peroxide (H2O2) has recently been identified as the earliest wound attractant in Drosophila embryos and zebrafish larvae. The H2O2 signal is generated by activation of an NADPH oxidase, DUOX, and as a consequence, the first inflammatory cells are recruited to the wound within minutes. To date, nothing is known about how wounding activates DUOX. Here, we show that laser wounding of the Drosophila embryo epidermis triggers an instantaneous calcium flash, which travels as a wave via gap junctions several cell rows back from the wound edge. Blocking this calcium flash inhibits H2O2 release at the wound site and leads to a reduction in the number of immune cells migrating to the wound. We suggest that the wound-induced calcium flash activates DUOX via an EF hand calcium-binding motif and thus triggers the production of the attractant damage cue H2O2. Therefore, calcium represents the earliest signal in the wound inflammatory response

    Changing patterns of Otitis Media in the Waikato region during the Covid Pandemic

    Get PDF
    Introduction. Acute otitis media (AOM) is a common condition of children encountered in general practice. A proportion of children develop otitis media with effusion (OME), which may require tympanostomy and ventilation tube insertion. Aim. The aim of the study was to compare the incidence of AOM in Māori and New Zealand (NZ) European children in general practice and the referral practices to secondary care for tympanostomy and ventilation tube insertion. Methods. The study was conducted in two parts: (1) an analysis of the incidence of AOM and OME in a rural Waikato general practice (ƌtorohanga) with a high Māori population over a 2-year period; and (2) an analysis of all referrals to the otorhinolaryngology (ORL) department at Waikato District Health Board and tympanostomy and ventilation tube insertion by this service over the same period. Results. The incidence of AOM was similar in Māori compared with NZ European children. The incidence declined significantly between 2019 and 2020 and 50% of children with AOM were treated with antibiotics. Referral rates to the ORL department were greater for Māori compared with NZ European children as were tympanostomy and ventilation tube insertion rates. Discussion. Although AOM is common, OME was rarely diagnosed. The clinical guidelines regarding antibiotic use for common conditions are not being readily adopted and further research is needed into this matter. The COVID-19 pandemic had a substantial effect on demand both in general practice and in the hospital sector. This may have been due to a reduction in the incidence of AOM or due to system changes caused by the pandemic

    Aerothermodynamic Analysis of a Reentry Brazilian Satellite

    Full text link
    This work deals with a computational investigation on the small ballistic reentry Brazilian vehicle SARA (acronyms for SAt\'elite de Reentrada Atmosf\'erica). Hypersonic flows over the vehicle SARA at zero-degree angle of attack in a chemical equilibrium and thermal non-equilibrium are modeled by the Direct Simulation Monte Carlo (DSMC) method, which has become the main technique for studying complex multidimensional rarefied flows, and that properly accounts for the non-equilibrium aspects of the flows. The emphasis of this paper is to examine the behavior of the primary properties during the high altitude portion of SARA reentry. In this way, velocity, density, pressure and temperature field are investigated for altitudes of 100, 95, 90, 85 and 80 km. In addition, comparisons based on geometry are made between axisymmetric and planar two-dimensional configurations. Some significant differences between these configurations were noted on the flowfield structure in the reentry trajectory. The analysis showed that the flow disturbances have different influence on velocity, density, pressure and temperature along the stagnation streamline ahead of the capsule nose. It was found that the stagnation region is a thermally stressed zone. It was also found that the stagnation region is a zone of strong compression, high wall pressure. Wall pressure distributions are compared with those of available experimental data and good agreement is found along the spherical nose for the altitude range investigated.Comment: The paper will be published in Vol. 42 of the Brazilian Journal of Physic

    Food allergy

    Get PDF
    Food allergy is defined as an adverse immunologic response to a dietary protein. Food-related reactions are associated with a broad array of signs and symptoms that may involve many bodily systems including the skin, gastrointestinal and respiratory tracts, and cardiovascular system. Food allergy is a leading cause of anaphylaxis and, therefore, referral to an allergist for appropriate and timely diagnosis and treatment is imperative. Diagnosis involves a careful history and diagnostic tests, such as skin prick testing, serum-specific immunoglobulin E (IgE) testing and, if indicated, oral food challenges. Once the diagnosis of food allergy is confirmed, strict elimination of the offending food allergen from the diet is generally necessary. For patients with significant systemic symptoms, the treatment of choice is epinephrine administered by intramuscular injection into the lateral thigh. Although most children “outgrow” allergies to milk, egg, soy and wheat, allergies to peanut, tree nuts, fish and shellfish are often lifelong. This article provides an overview of the epidemiology, pathophysiology, diagnosis, management and prognosis of patients with food allergy

    Decreasing intensity of open-ocean convection in the Greenland and Iceland seas

    Get PDF
    The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC
    • 

    corecore