8 research outputs found

    A functional variant in the Stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork

    Get PDF
    There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.This research was supported by grants from the Spanish Ministry of Science and Innovation (AGL2009-09779 and AGL2012-33529). RRF is recipient of a PhD scholarship from the Spanish Ministry of Science and Innovation (BES-2010-034607). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of manuscript

    Application of the implicitly updated arnoldi method with a complex shift-and-invert strategy in mhd

    No full text
    The implicitly updated Arnoldi method introduced by Sorensen with an internal QR-iteration is a very useful eigenvalue solver for nonsymmetric eigenvalue problems. To make this method rigorous in finding internal eigenvalues, a complex shift-and-invert strategy is used. Therefore a complex variant of the method has been constructed and the method has been compared with a Lanczos method, as implemented by Cullum at al., for a practical problem in magnetohydrodynamics. (c) 1995 Academic Press, Inc.status: publishe

    Influence of Polymer Particle Size on the Percolation Threshold of Electrically Conductive Latex-Based Composites

    No full text
    Monodispersed copolymer emulsions, each with a different polymer particle size, were used to investigate the effect of particle size on the electrical and thermomechanical properties of carbon black (CB)-filled segregated network composites. These emulsions were synthesized with equal moles of methyl methacrylate and butyl acrylate, with latex particle size ranging from 83 to 771 nm. The electrical percolation threshold was found to decrease from 2.7 to 1.1 vol % CB as the latex particle size was increased. Microstructural images reveal diminished latex coalescence, and improved CB segregation, with increasing latex particle size. In general, coalescence is shown to increase for all systems with increasing CB concentration. Furthermore, all systems exhibited a similar maximum electrical conductivity plateau of 0.7 S cm(-1), albeit at lower concentration for larger latex particle size. This ability to tailor percolation threshold with latex particle size provides an important tool for manipulating electrical and mechanical properties of polymer nanocomposites. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1547-1554, 201
    corecore