2,917 research outputs found

    Variational theory for a single polyelectrolyte chain revisited

    Full text link
    We reconsider the electrostatic contribution to the persistence length, e\ell_e, of a single, infinitely long charged polymer in the presence of screening. A Gaussian variational method is employed, taking e\ell_e as the only variational parameter. For weakly charged and flexible chains, crumpling occurs at small length scales because conformational fluctuations overcome electrostatic repulsion. The electrostatic persistence length depends on the square of the screening length, eκ2\ell_e\sim\kappa^{-2}, as first argued by Khokhlov and Khachaturian by applying the Odijk-Skolnick-Fixman (OSF) theory to a string of crumpled blobs. We compare our approach to previous theoretical works (including variational formulations) and show that the result eκ1\ell_e\sim\kappa^{-1} found by several authors comes from the improper use of a cutoff at small length scales. For highly charged and stiff chains, crumpling does not occur; here we recover the OSF result and validate the perturbative calculation for slightly bent rods.Comment: 11 pages, 6 figure

    Persistence length of a polyelectrolyte in salty water: a Monte-Carlo study

    Full text link
    We address the long standing problem of the dependence of the electrostatic persistence length lel_e of a flexible polyelectrolyte (PE) on the screening length rsr_s of the solution within the linear Debye-Huckel theory. The standard Odijk, Skolnick and Fixman (OSF) theory suggests lers2l_e \propto r_s^2, while some variational theories and computer simulations suggest lersl_e \propto r_s. In this paper, we use Monte-Carlo simulations to study the conformation of a simple polyelectrolyte. Using four times longer PEs than in previous simulations and refined methods for the treatment of the simulation data, we show that the results are consistent with the OSF dependence lers2l_e \propto r_s^2. The linear charge density of the PE which enters in the coefficient of this dependence is properly renormalized to take into account local fluctuations.Comment: 7 pages, 6 figures. Various corrections in text and reference

    Novel Quantum States of the Rational Calogero Models Without the Confining Interaction

    Get PDF
    We show that the N-particle A_{N-1} and B_N rational Calogero models without the harmonic interaction admit a new class of bound and scattering states. These states owe their existence to the self-adjoint extensions of the corresponding Hamiltonians, labelled by a real parameter z. It is shown that the new states appear for all values of N and for specific ranges of the coupling constants. Moreover, they are shown to exist even in the excited sectors of the Calogero models. The self-adjoint extension generically breaks the classical scaling symmetry, leading to quantum mechanical scaling anomaly. The scaling symmetry can however be restored for certain values of the parameter z. We also generalize these results for many particle systems with classically scale invariant long range interactions in arbitrary dimensions.Comment: Latex file, 21 pages; minor changes in text, some references added, to appear in Nucl. Phys.

    Vacuum orbit and spontaneous symmetry breaking in hyperbolic sigma models

    Full text link
    We present a detailed study of quantized noncompact, nonlinear SO(1,N) sigma-models in arbitrary space-time dimensions D \geq 2, with the focus on issues of spontaneous symmetry breaking of boost and rotation elements of the symmetry group. The models are defined on a lattice both in terms of a transfer matrix and by an appropriately gauge-fixed Euclidean functional integral. The main results in all dimensions \geq 2 are: (i) On a finite lattice the systems have infinitely many nonnormalizable ground states transforming irreducibly under a nontrivial representation of SO(1,N); (ii) the SO(1,N) symmetry is spontaneously broken. For D =2 this shows that the systems evade the Mermin-Wagner theorem. In this case in addition: (iii) Ward identities for the Noether currents are derived to verify numerically the absence of explicit symmetry breaking; (iv) numerical results are presented for the two-point functions of the spin field and the Noether current as well as a new order parameter; (v) in a large N saddle-point analysis the dynamically generated squared mass is found to be negative and of order 1/(V \ln V) in the volume, the 0-component of the spin field diverges as \sqrt{\ln V}, while SO(1,N) invariant quantities remain finite.Comment: 60 pages, 12 Figures, AMS-Latex; v2: results on vacuum orbit and spontaneous symmetry breaking extended to all dimension

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure

    Single-Particle Green Functions in Exactly Solvable Models of Bose and Fermi Liquids

    Full text link
    Based on a class of exactly solvable models of interacting bose and fermi liquids, we compute the single-particle propagators of these systems exactly for all wavelengths and energies and in any number of spatial dimensions. The field operators are expressed in terms of bose fields that correspond to displacements of the condensate in the bose case and displacements of the fermi sea in the fermi case. Unlike some of the previous attempts, the present attempt reduces the answer for the spectral function in any dimension in both fermi and bose systems to quadratures. It is shown that when only the lowest order sea-displacement terms are included, the random phase approximation in its many guises is recovered in the fermi case, and Bogoliubov's theory in the bose case. The momentum distribution is evaluated using two different approaches, exact diagonalisation and the equation of motion approach. The novelty being of course, the exact computation of single-particle properties including short wavelength behaviour.Comment: Latest version to be published in Phys. Rev. B. enlarged to around 40 page
    corecore