79 research outputs found
New form discovery for the analgesics flurbiprofen and sulindac facilitated by polymer-induced heteronucleation
The selection and discovery of new crystalline forms is a longstanding issue in solid-state chemistry of critical importance because of the effect molecular packing arrangement exerts on materials properties. Polymer-induced heteronucleation has recently been developed as a powerful approach to discover and control the production of crystal modifications based on the insoluble polymer heteronucleant added to the crystallization solution. The selective nucleation and discovery of new crystal forms of the well-studied pharmaceuticals flurbiprofen (FBP) and sulindac (SUL) has been achieved utilizing this approach. For the first time, FBP form III was produced in bulk quantities and its crystal structure was also determined. Furthermore, a novel 3:2 FBP:H 2 O phase was discovered that nucleates selectively from only a few polymers. Crystallization of SUL in the presence of insoluble polymers facilitated the growth of form I single crystals suitable for structure determination. Additionally, a new SUL polymorph (form IV) was discovered by this method. The crystal forms of FBP and SUL are characterized by Raman and FTIR spectroscopies, X-ray diffraction, and differential scanning calorimetry. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 2978â2986, 2007Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57336/1/20954_ftp.pd
Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing
In this paper, an electrospray technique followed by annealing at high temperatures was developed to produce nanocrystals of carbamazepine (CBZ), a poorly water-soluble drug, for continuous pharmaceutical manufacturing process. Electrospraying solutions of CBZ in methanol obeys the expected scaling law of current, which is I ⌠Q[superscript 1/2] (I, electrical current; Q, flow rate), for liquids with sufficiently high conductivity and viscosity. Lower flow rates during electrospraying were preferred to produce smaller diameters of monodisperse, dense CBZ nanoparticles. CBZ nanoparticles were predominantly amorphous immediately after electrospraying. Crystallization of CBZ nanoparticles was accelerated by annealing at high temperatures. CBZ nanocrystals with the most stable polymorph, form III, were obtained by annealing at 90°C, which is above the transition temperature, 78°C, for the enantiotropic CBZ form III and form I. The solubility and dissolution rates of CBZ nanocrystals increased significantly as compared with those of CBZ bulk particles. Therefore, electrospray technology has the potential to produce pharmaceutical dosage forms with enhanced bioavailability and can readily be integrated in a continuous pharmaceutical manufacturing process.Novartis-MIT Center for Continuous Manufacturin
Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease
Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al
Recent trends in the use of electrical neuromodulation in Parkinson's disease
Purpose of Review: This review aims to survey recent trends in electrical forms of neuromodulation, with a specific application to Parkinsonâs disease (PD). Emerging trends are identified, highlighting synergies in state-of-the-art neuromodulation strategies, with directions for future improvements in stimulation efficacy suggested.
Recent Findings: Deep brain stimulation remains the most common and effective form of electrical stimulation for the treatment of PD. Evidence suggests that transcranial direct current stimulation (tDCS) most likely impacts the motor symptoms of the disease, with the most prominent results relating to rehabilitation. However, utility is limited due to its weak effects and high variability, with medication state a key confound for efficacy level. Recent innovations in transcranial alternating current stimulation (tACS) offer new areas for investigation.
Summary: Our understanding of the mechanistic foundations of electrical current stimulation is advancing and as it does so, trends emerge which steer future clinical trials towards greater efficacy
Sickle Erythrocytes and Platelets Augment Lung Leukotriene Synthesis with Downregulation of Anti-Inflammatory Proteins: Relevance in the Pathology of the Acute Chest Syndrome
Abstract. Initiation, progression, and resolution of vaso-occlusive pain episodes in sickle cell disease (SCD) have been recognized as reperfusion injury, which provokes an inflammatory response in the pulmonary circulation. Some 5-lipoxygenase (5-lox) metabolites are potent vasoconstrictors in the pulmonary circulation. We studied stimulation of production of the inflammatory eicosanoids leukotrienes (LTs) and prostaglandin E(2) (PGE(2)) by isolated rat lungs perfused with sickle (HbSS) erythrocytes. Our hypothesis is that HbSS erythrocytes produce more LTs than normal (HbAA) erythrocytes, which can induce vaso-occlusive episodes in SCD patients. Lung perfusates were collected at specific time points and purified by high-pressure liquid chromatography, and LTC(4) and PGE(2) contents were measured by enzyme-linked immunosorbent assay (ELISA). Rat lung explants were also cultured with purified HbAA and HbSS peptides, and 5-lox, cyclooxygenase 1/2, and platelet-activating factor receptor (PAFR) proteins were measured by Western blotting, while prostacyclin and LTs produced by cultured lung explants were measured by ELISA. Lung weight gain and blood gas data were not different among the groups. HbSS-perfused lungs produced more LTC(4) and PGE(2) than HbAA-perfused lungs: 10.40 ± 0.62 versus 0.92 ± 0.2 ng/g dry lung weight (mean ± SEM; P = 0.0001) for LTC(4). Inclusion of autologous platelets (platelet-rich plasma) elevated LTC(4) production to 12.6 ± 0.96 and 7 ± 0.60 ng/g dry lung weight in HbSS and HbAA perfusates, respectively. HbSS lungs also expressed more 5-lox and PAFR. The data suggest that HbSS erythrocytes and activated platelets in patientâs pulmonary microcirculation will enhance the synthesis and release of the proinflammatory mediators LTC(4) and PGE(2), both of which may contribute to onset of the acute chest syndrome in SCD
- âŠ