940 research outputs found

    Symmetry in the insulator - quantum Hall - insulator transitions observed in a Ge/SiGe quantum well

    Full text link
    We examine the magnetic field driven insulator-quantum Hall-insulator transitions of the two dimensional hole gas in a Ge/SiGe quantum well. We observe direct transitions between low and high magnetic field insulators and the ν=1\nu=1 quantum Hall state. With increasing magnetic field, the transitions from insulating to quantum Hall and quantum Hall to insulating are very similar with respect to their transport properties. We address the temperature dependence around the transitions and show that the characteristic energy scale for the high field transition is larger.Comment: 4 page

    Two separate mechanisms are involved in membrane permeabilization during lipid oxidation

    Get PDF
    Lipid oxidation is a universal degradative process of cell membrane lipids that is induced by oxidative stress and reactive oxygen and nitrogen species (RONS) in multiple pathophysiological situations. It has been shown that certain oxidized lipids alter membrane properties, leading to a loss of membrane function. Alteration of membrane properties is thought to depend on the initial membrane lipid composition, such as the number of acyl chain unsaturations. However, it is unclear how oxidative damage is related to biophysical properties of membranes. We therefore set out to quantify lipid oxidation through various analytical methods and determine key biophysical membrane parameters using model membranes containing lipids with different degrees of lipid unsaturation. As source for RONS, we used cold plasma, which is currently developed as treatment for infections and cancer. Our data revealed complex lipid oxidation that can lead to two main permeabilization mechanisms. The first one appears upon direct contact of membranes with RONS and depends on the formation of truncated oxidized phospholipids. These lipids seem to be partly released from the bilayer, implying that they are likely to interact with other membranes and potentially act as signaling molecules. This mechanism is independent of lipid unsaturation, does not rely on large variations in lipid packing, and is most probably mediated via short-living RONS. The second mechanism takes over after longer incubation periods and probably depends on the continued formation of lipid oxygen adducts such as lipid hydroperoxides or ketones. This mechanism depends on lipid unsaturation and involves large variations in lipid packing. This study indicates that polyunsaturated lipids, which are present in mammalian membranes rather than in bacteria, do not sensitize membranes to instant permeabilization by RONS but could promote long-term damage.</p

    Two-phase behavior in strained thin films of hole-doped manganites

    Full text link
    We present a study of the effect of biaxial strain on the electrical and magnetic properties of thin films of manganites. We observe that manganite films grown under biaxial compressive strain exhibit island growth morphology which leads to a non-uniform distribution of the strain. Transport and magnetic properties of these films suggest the coexistence of two different phases, a metallic ferromagnet and an insulating antiferromagnet. We suggest that the high strain regions are insulating while the low strain regions are metallic. In such non-uniformly strained samples, we observe a large magnetoresistance and a field-induced insulator to metal transition.Comment: 5 pages ReVTeX, 5 figures included, Figures 3, 4 and 5 low resolution, high resolution figures available on request from authors, submitted to Phys. Rev.

    Quantifying the levitation picture of extended states in lattice models

    Full text link
    The behavior of extended states is quantitatively analyzed for two dimensional lattice models. A levitation picture is established for both white-noise and correlated disorder potentials. In a continuum limit window of the lattice models we find simple quantitative expressions for the extended states levitation, suggesting an underlying universal behavior. On the other hand, these results point out that the Quantum Hall phase diagrams may be disorder dependent.Comment: 5 pages, submitted to PR

    Levitation of quantum Hall critical states in a lattice model with spatially correlated disorder

    Full text link
    The fate of the current carrying states of a quantum Hall system is considered in the situation when the disorder strength is increased and the transition from the quantum Hall liquid to the Hall insulator takes place. We investigate a two-dimensional lattice model with spatially correlated disorder potentials and calculate the density of states and the localization length either by using a recursive Green function method or by direct diagonalization in connection with the procedure of level statistics. From the knowledge of the energy and disorder dependence of the localization length and the density of states (DOS) of the corresponding Landau bands, the movement of the current carrying states in the disorder--energy and disorder--filling-factor plane can be traced by tuning the disorder strength. We show results for all sub-bands, particularly the traces of the Chern and anti-Chern states as well as the peak positions of the DOS. For small disorder strength WW we recover the well known weak levitation of the critical states, but we also reveal, for larger WW, the strong levitation of these states across the Landau gaps without merging. We find the behavior to be similar for exponentially, Gaussian, and Lorentzian correlated disorder potentials. Our study resolves the discrepancies of previously published work in demonstrating the conflicting results to be only special cases of a general lattice model with spatially correlated disorder potentials. To test whether the mixing between consecutive Landau bands is the origin of the observed floating, we truncate the Hilbert space of our model Hamiltonian and calculate the behavior of the current carrying states under these restricted conditions.Comment: 10 pages, incl. 13 figures, accepted for publication in PR

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Hidden degree of freedom and critical states in a two-dimensional electron gas in the presence of a random magnetic field

    Full text link
    We establish the existence of a hidden degree of freedom and the critical states of a spinless electron system in a spatially-correlated random magnetic field with vanishing mean. Whereas the critical states are carried by the zero-field contours of the field landscape, the hidden degree of freedom is recognized as being associated with the formation of vortices in these special contours. It is argued that, as opposed to the coherent backscattering mechanism of weak localization, a new type of scattering processes in the contours controls the underlying physics of localization in the random magnetic field system. In addition, we investigate the role of vortices in governing the metal-insulator transition and propose a renormalization-group diagram for the system under study.Comment: 17 pages, 16 figures; Figs. 1, 7, 9, and 10 have been reduced in quality for e-submissio

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding
    corecore