604 research outputs found

    Benzoxazine-based phosphinated bisphenols and their application in preparing flame-retardant, low dielectric cyanate ester thermosets

    Get PDF
    This work reveals a facile, one-pot synthesis of phosphinated bisphenols (1-2) from a nucleophilic addition of 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) to diaminophenylmethane-and diaminophenylether-based benzoxazines (P-ddm and P-oda). A reaction mechanism including active hydrogen abstraction, ring-opening, and nucleophilic addition was proposed for the synthesis. Phosphinated dicyanate esters (3-4) were prepared based on bisphenols (1-2), and were copolymerized with a commercially available dicyanate ester of bisphenol A (BACY). The properties such as glass transition temperature, coefficient of thermal expansion, thermal decomposition temperature, water absorption, and flame retardancy of the resulting thermosets were evaluated. Experimental data show that incorporating (3-4) into BACY enhances the flame retardancy, dimensional stability and dielectric properties with small penalty to the thermal properties. A thermoset with T-g 241 degrees C, CTE 50 ppm per degrees C, D-k 3.01 (1 GHz), T-d (5%), N-2: 407 degrees C, and UL-94 V-0 rating can be achieved via this approach

    Effective Dynamic Range in Measurements with Flash Analog-to-Digital Convertor

    Full text link
    Flash Analog to Digital Convertor (FADC) is frequently used in nuclear and particle physics experiments, often as the major component in big multi-channel systems. The large data volume makes the optimization of operating parameters necessary. This article reports a study of a method to extend the dynamic range of an 8-bit FADC from the nominal 28\rm{2^8} value. By comparing the integrated pulse area with that of a reference profile, good energy reconstruction and event identification can be achieved on saturated events from CsI(Tl) crystal scintillators. The effective dynamic range can be extended by at least 4 more bits. The algorithm is generic and is expected to be applicable to other detector systems with FADC readout.Comment: 19 pages, 1 table, 10 figure

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Prospects of Scintillating Crystal Detector in Low-Energy Low-Background Experiments

    Get PDF
    Scintillating crystal detector offers potential advantages in low-energy (keV-MeV range) low-background experiments for particle physics and astrophysics. The merits are discussed using CsI(Tl) crystal as illustrations. The various physics topics which can be pursued with this detector technology are summarized. A conceptual design for a generic detector is presented.Comment: 20 pages, 1 tables, 7 figures, submitted to Astroparticle Physic

    Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators

    Full text link
    The inorganic crystal scintillator CsI(Tl) has been used for low energy neutrino and Dark Matter experiments, where the intrinsic radiopurity is an issue of major importance. Low-background data were taken with a CsI(Tl) crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape discrimination capabilities of the crystal, as well as the temporal and spatial correlations of the events, provide powerful means of measuring the intrinsic radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event selection algorithms are described, with which the decay half-lives of Po-218, Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the contamination levels, their concentration gradients with the crystal growth axis, and the uniformity among different crystal samples, are reported. The radiopurity in the U-238 and Th-232 series are comparable to those of the best reported in other crystal scintillators. Significant improvements in measurement sensitivities were achieved, similar to those from dedicated massive liquid scintillator detector. This analysis also provides in situ measurements of the detector performance parameters, such as spatial resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure

    Massive Charged Scalar Quasinormal Modes of Reissner-N\"ordstrom Black Hole Surrounded by Quintessence

    Full text link
    We evaluate the complex frequencies of the normal modes for the massive charged scalar field perturbations around a Reissner-N\"ordstrom black hole surrounded by a static and spherically symmetric quintessence using third order WKB approximation approach. Due to the presence of quintessence, quasinormal frequencies damp more slowly. We studied the variation of quasinormal frequencies with charge of the black bole, mass and charge of perturbating scalar field and the quintessential state parameter.Comment: 9 pages, 9 figures and one tabl

    A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions

    Get PDF
    Scintillating crystal detector may offer some potential advantages in the low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed near the core of Nuclear Power Station II in Taiwan is being constructed for the studies of electron-neutrino scatterings and other keV-MeV range neutrino interactions. The motivations of this detector approach, the physics to be addressed, the basic experimental design, and the characteristic performance of prototype modules are described. The expected background channels and their experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method

    Nonequilibrium Josephson effect in mesoscopic ballistic multiterminal SNS junctions

    Full text link
    We present a detailed study of nonequilibrium Josephson currents and conductance in ballistic multiterminal SNS-devices. Nonequilibrium is created by means of quasiparticle injection from a normal reservoir connected to the normal part of the junction. By applying a voltage at the normal reservoir the Josephson current can be suppressed or the direction of the current can be reversed. For a junction longer than the thermal length, LξTL\gg\xi_T, the nonequilibrium current increases linearly with applied voltage, saturating at a value equal to the equilibrium current of a short junction. The conductance exhibits a finite bias anomaly around eVvF/LeV \sim \hbar v_F/L. For symmetric injection, the conductance oscillates 2π2\pi-periodically with the phase difference ϕ\phi between the superconductors, with position of the minimum (ϕ=0\phi=0 or π\pi) dependent on applied voltage and temperature. For asymmetric injection, both the nonequilibrium Josephson current and the conductance becomes π\pi-periodic in phase difference. Inclusion of barriers at the NS-interfaces gives rise to a resonant behavior of the total Josephson current with respect to junction length with a period λF\sim \lambda_F. Both three and four terminal junctions are studied.Comment: 21 pages, 19 figures, submitted to Phys. Rev.
    corecore