256 research outputs found

    Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum

    Get PDF
    The influence of the magnetic moment interaction of nucleons on nucleon-deuteron elastic scattering and breakup cross sections and on elastic scattering polarization observables has been studied. Among the numerous elastic scattering observables only the vector analyzing powers were found to show a significant effect, and of opposite sign for the proton-deuteron and neutron-deuteron systems. This finding results in an even larger discrepancy than the one previously established between neutron-deuteron data and theoretical calculations. For the breakup reaction the largest effect was found for the final-state-interaction cross sections. The consequences of this observation on previous determinations of the ^1S_0 scattering lengths from breakup data are discussed.Comment: 24 pages, 6 ps figures, 1 png figur

    Three-Nucleon Forces from Chiral Effective Field Theory

    Get PDF
    We perform the first complete analysis of nd scattering at next-to-next-to-leading order in chiral effective field theory including the corresponding three-nucleon force and extending our previous work, where only the two-nucleon interaction has been taken into account. The three-nucleon force appears first at this order in the chiral expansion and depends on two unknown parameters. These two parameters are determined from the triton binding energy and the nd doublet scattering length. We find an improved description of various scattering observables in relation to the next-to-leading order results especially at moderate energies (E_lab = 65 MeV). It is demonstrated that the long-standing A_y-problem in nd elastic scattering is still not solved by the leading 3NF, although some visible improvement is observed. We discuss possibilities of solving this puzzle. The predicted binding energy for the alpha-particle agrees with the empirical value.Comment: 36 pp, 20 figure

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    A new form of three-body Faddeev equations in the continuum

    Full text link
    We propose a novel approach to solve the three-nucleon (3N) Faddeev equation which avoids the complicated singularity pattern going with the moving logarithmic singularities of the standard approach. In this new approach the treatment of the 3N Faddeev equation becomes essentially as simple as the treatment of the two-body Lippmann-Schwinger equation. Very good agreement of the new and old approaches in the application to nucleon-deuteron elastic scattering and the breakup reaction is found.Comment: 20 pages, 3 eps figure

    Time Projection Chamber (TPC) detectors for nuclear astrophysics studies with gamma beams

    Get PDF
    Gamma-Beams at the HIS facility in the USA and anticipated at the ELI-NP facility, now constructed in Romania, present unique new opportunities to advance research in nuclear astrophysics; not the least of which is resolving open questions in oxygen formation during stellar helium burning via a precise measurement of the 12C() reaction. Time projection chamber (TPC) detectors operating with low pressure gas (as an active target) are ideally suited for such studies. We review the progress of the current research program and plans for the future at the HIS facility with the optical readout TPC (O-TPC) and the development of an electronic readout TPC for the ELI-NP facility (ELITPC)

    Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube

    Get PDF
    The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society

    Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    Get PDF
    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits. © 2017 American Physical Society
    corecore