313 research outputs found
Does Tourist–Host Social Contact Reduce Perceived Cultural Distance?
Tourist–host social contact significantly influences the perceptions of tourists and deserves more attention from scholars in the field of tourism research. However, studies on the relationship between these two constructs are limited. To address this research gap, the present study develops and validates instruments for measuring social contact and perceived cultural distance in the context of tourism, explores the effects of social contact on perceived cultural distance, and provides implications for tourism stakeholders, including governments, tourism operators, and local communities. A survey was conducted among Hong Kong tourists traveling to Mainland China. The study had two significant findings: (1) the quality of contact negatively influences tourists’ perceived cultural distance and (2) in terms of the quantity of contact, social-oriented contacts negatively influence perceived cultural distance, whereas service-oriented contacts positively affect perceived cultural distance. Implications were provided to contribute to theoretical and empirical realms, and to guide policy formulation
The Hubbard model on a complete graph: Exact Analytical results
We derive the analytical expression of the ground state of the Hubbard model
with unconstrained hopping at half filling and for arbitrary lattice sites.Comment: Email:[email protected]
Real space renormalization group approach to the 2d antiferromagnetic Heisenberg model
The low energy behaviour of the 2d antiferromagnetic Heisenberg model is
studied in the sector with total spins by means of a renormalization
group procedure, which generates a recursion formula for the interaction matrix
of 4 neighbouring " clusters" of size ,
from the corresponding quantities . Conservation
of total spin is implemented explicitly and plays an important role. It is
shown, how the ground state energies , approach each
other for increasing , i.e. system size. The most relevant couplings in the
interaction matrices are generated by the transitions
between the ground states
() on an -cluster of size , mediated
by the staggered spin operator Comment: 18 pages, 8 figures, RevTe
Multi-neutron transfer coupling in sub-barrier 32S+90,96Zr fusion reactions
The role of neutron transfers is investigated in the fusion process below the
Coulomb barrier by analyzing 32S+90Zr and 32S+96Zr as benchmark reactions. A
full coupled-channel calculation of the fusion excitation functions has been
performed for both systems by using multi-neutron transfer coupling for the
more neutron-rich reaction. The enhancement of fusion cross sections for
32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations
including the coupling of the neutron-transfer channels following the Zagrebaev
semiclassical model. We found similar effects for 40Ca+90Zr and 40Ca+96Zr
fusion excitation functions.Comment: Minor corrections, 11 pages, 4 figures, Fusion11 Conference, Saint
Malo, France, 2-6 mai 201
Modified conjugated gradient method for diagonalising large matrices
We present an iterative method to diagonalise large matrices. The basic idea
is the same as the conjugated gradient (CG) method, i.e, minimizing the
Rayleigh quotient via its gradient and avoiding reintroduce errors to the
directions of previous gradients. Each iteration step is to find lowest
eigenvector of the matrix in a subspace spanned by the current trial vector and
the corresponding gradient of the Rayleigh quotient, as well as some previous
trial vectors. The gradient, together with the previous trail vectors, play a
similar role of the conjugated gradient of the original CG algorithm. Our
numeric tests indicate that this method converges significantly faster than the
original CG method. And the computational cost of one iteration step is about
the same as the original CG method. It is suitably for first principle
calculations.Comment: 6 Pages, 2EPS figures. (To appear in Phys. Rev. E
KAgF3: quasi-one-dimensional magnetism in three-dimensional magnetic ions sublattice
The electronic structure and magnetic properties of the Jahn-Teller-distorted
perovskite KAgF3 have been investigated using the full-potential linerized aug-
mented plane-wave method. It is found that KAgF3 exhibits significant
quasi-one- dimensional antiferromagnetism with the ratio of exchange constant
jJ?j (perpen- dicular to the z axis) and J (along the z axis) about 0.04,
although the sublattice of magnetic ion is three-dimensional. The strong
quasi-one-dimensional antiferromag- netism originates from the
C-antiferro-distortive orbital ordering of the Ag2+ 4d9 ions. The orbital
ordered antiferromagnetic insulating state in KAgF3 is determined by on-site
Coulomb repulsion to a large extent.Comment: 15 pages, 6 figure
Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies
We have investigated two-electron bound state formation in a square
two-dimensional t-J-U model with hopping anisotropies for zero electron
density; these anisotropies are introduced to mimic the hopping energies
similar to those expected in stripe-like arrangements of holes and spins found
in various transition metal oxides. In this report we provide analytical
solutions to this problem, and thus demonstrate that bound-state formation
occurs at a critical exchange coupling, J_c, that decreases to zero in the
limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be
contrasted with J_c/t = 2 for either a one-dimensional chain, or a
two-dimensional plane with isotropic hopping. Most importantly, this behaviour
is found to be qualitatively similar to that of two electrons on the two-leg
ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter
result as guidance, we have evaluated the pair correlation function, thus
determining that the bound state corresponds to one electron moving along one
chain, with the second electron moving along the opposite chain, similar to two
electrons confined to move along parallel, neighbouring, metallic stripes. We
emphasize that the above results are not restricted to the zero density limit -
we have completed an exact diagonalization study of two holes in a 12 X 2
two-leg ladder described by the t-J model and have found that the
above-mentioned lowering of the binding energy with hopping anisotropy persists
near half filling.Comment: 6 pages, 3 eps figure
A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion
AbstractConsidering the present limitation of the need for external parameters to describe the nucleus–nucleus potential and the couplings in the coupled-channels calculations, this work introduces an improved method without adjustable parameter to overcome the limitation and then sort out the positive Q-value neutron transfers (PQNT) effects based on the CCFULL calculations. The corresponding analysis for Ca+Ca, S,Ca+Sn, and S,Ca+Zr provides a reliable proof and a quantitative evaluation for the residual enhancement (RE) related to PQNT. In addition, the RE for S32,Ca40+Zr94 shows an unexpected larger enhancement than S32,Ca40+Zr96 despite the similar multi-neutron transfer Q-values. This method should rather strictly test the fusion models and be helpful for excavating the underlying physics
Donor Centers and Absorption Spectra in Quantum Dots
We have studied the electronic properties and optical absorption spectra of
three different cases of donor centers, D^{0}, D^{-} and D^{2-}, which are
subjected to a perpendicular magnetic field, using the exact diagonalization
method. The energies of the lowest lying states are obtained as function of the
applied magnetic field strength B and the distance zeta between the positive
ion and the confinement xy-plane. Our calculations indicate that the positive
ion induces transitions in the ground-state, which can be observed clearly in
the absorption spectra, but as zeta goes to 0 the strength of the applied
magnetic field needed for a transition to occur tends to infinity.Comment: 5 pages, 4 figures, REVTeX 4, gzipped tar fil
Macrospin approximation and quantum effects in models for magnetization reversal
The thermal activation of magnetization reversal in magnetic nanoparticles is
controlled by the anisotropy-energy barrier. Using perturbation theory, exact
diagonalization and stability analysis of the ferromagnetic spin-s Heisenberg
model with coupling or single-site anisotropy, we study the effects of quantum
fluctuations on the height of the energy barrier. Opposed to the classical
case, there is no critical anisotropy strength discriminating between reversal
via coherent rotation and via nucleation/domain-wall propagation. Quantum
fluctuations are seen to lower the barrier depending on the anisotropy
strength, dimensionality and system size and shape. In the weak-anisotropy
limit, a macrospin model is shown to emerge as the effective low-energy theory
where the microscopic spins are tightly aligned due to the ferromagnetic
exchange. The calculation provides explicit expressions for the anisotropy
parameter of the effective macrospin. We find a reduction of the
anisotropy-energy barrier as compared to the classical high spin-s limit.Comment: 10 pages, 11 figure
- …
