117 research outputs found

    Molecular dynamics study of accelerated ion-induced shock waves in biological media

    Get PDF
    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model

    Semiclassical Trace Formulas for Noninteracting Identical Particles

    Full text link
    We extend the Gutzwiller trace formula to systems of noninteracting identical particles. The standard relation for isolated orbits does not apply since the energy of each particle is separately conserved causing the periodic orbits to occur in continuous families. The identical nature of the particles also introduces discrete permutational symmetries. We exploit the formalism of Creagh and Littlejohn [Phys. Rev. A 44, 836 (1991)], who have studied semiclassical dynamics in the presence of continuous symmetries, to derive many-body trace formulas for the full and symmetry-reduced densities of states. Numerical studies of the three-particle cardioid billiard are used to explicitly illustrate and test the results of the theory.Comment: 29 pages, 11 figures, submitted to PR

    Three disks in a row: A two-dimensional scattering analog of the double-well problem

    Full text link
    We investigate the scattering off three nonoverlapping disks equidistantly spaced along a line in the two-dimensional plane with the radii of the outer disks equal and the radius of the inner disk varied. This system is a two-dimensional scattering analog to the double-well-potential (bound state) problem in one dimension. In both systems the symmetry splittings between symmetric and antisymmetric states or resonances, respectively, have to be traced back to tunneling effects, as semiclassically the geometrical periodic orbits have no contact with the vertical symmetry axis. We construct the leading semiclassical ``creeping'' orbits that are responsible for the symmetry splitting of the resonances in this system. The collinear three-disk-system is not only one of the simplest but also one of the most effective systems for detecting creeping phenomena. While in symmetrically placed n-disk systems creeping corrections affect the subleading resonances, they here alone determine the symmetry splitting of the 3-disk resonances in the semiclassical calculation. It should therefore be considered as a paradigm for the study of creeping effects. PACS numbers: 03.65.Sq, 03.20.+i, 05.45.+bComment: replaced with published version (minor misprints corrected and references updated); 23 pages, LaTeX plus 8 Postscript figures, uses epsfig.sty, espf.sty, and epsf.te

    Innovative solutions to novel drug development in mental health

    Get PDF
    There are many new advances in neuroscience and mental health which should lead to a greater understanding of the neurobiological dysfunction in neuropsychiatric disorders and new developments for early, effective treatments. To do this, a biomarker approach combining genetic, neuroimaging, cognitive and other biological measures is needed. The aim of this article is to highlight novel approaches for pharmacological and non-pharmacological treatment development. This article suggests approaches that can be taken in the future including novel mechanisms with preliminary clinical validation to provide a toolbox for mechanistic studies and also examples of translation and back-translation. The review also emphasizes the need for clinician-scientists to be trained in a novel way in order to equip them with the conceptual and experimental techniques required, and emphasizes the need for private-public partnership and pre-competitive knowledge exchange. This should lead the way for important new holistic treatment developments to improve cognition, functional outcome and well-being of people with neuropsychiatric disorders

    A shooting algorithm for problems with singular arcs

    Get PDF
    In this article we propose a shooting algorithm for a class of optimal control problems for which all control variables appear linearly. The shooting system has, in the general case, more equations than unknowns and the Gauss-Newton method is used to compute a zero of the shooting function. This shooting algorithm is locally quadratically convergent if the derivative of the shooting function is one-to-one at the solution. The main result of this paper is to show that the latter holds whenever a sufficient condition for weak optimality is satisfied. We note that this condition is very close to a second order necessary condition. For the case when the shooting system can be reduced to one having the same number of unknowns and equations (square system) we prove that the mentioned sufficient condition guarantees the stability of the optimal solution under small perturbations and the invertibility of the Jacobian matrix of the shooting function associated to the perturbed problem. We present numerical tests that validate our method.Comment: No. RR-7763 (2011); Journal of Optimization, Theory and Applications, published as 'Online first', January 201

    Tissue culture of ornamental cacti

    Full text link

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF
    • 

    corecore