641 research outputs found

    The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows

    Get PDF
    AbstractThe SLICK haplotype (http://omia.angis.org.au/OMIA001372/9913/) in cattle confers animals with a short and sleek hair coat. Originally identified in Senepol cattle, the gene has been introduced into Holsteins. The objectives of the current study were to determine (1) whether lactating Holsteins with the slick hair phenotype have superior ability for thermoregulation compared with wild-type cows or relatives not inheriting the SLICK haplotype, and (2) whether seasonal depression in milk yield would be reduced in SLICK cows. In experiment 1, diurnal variation in vaginal temperature in the summer was monitored for cows housed in a freestall barn with fans and sprinklers. Vaginal temperatures were lower in slick-haired cows than in relatives and wild-type cows. In experiment 2, acute responses to heat stress were monitored after cows were moved to a dry lot in which the only heat abatement was shade cloth. The increases in rectal temperature and respiration rate caused by heat stress during the day were lower for slick cows than for relatives or wild-type cows. Moreover, sweating rate was higher for slick cows than for cows of the other 2 types. In experiment 3, effects of season of calving (summer vs. winter) on milk yield and composition were determined. Compared with milk yield of cows calving in winter, milk yield during the first 90 d in milk was lower for cows calving in the summer. However, this reduction was less pronounced for slick cows than for wild-type cows. In conclusion, Holsteins with slick hair have superior thermoregulatory ability compared with non-slick animals and experience a less drastic depression in milk yield during the summer

    Can induced gravity isotropize Bianchi I, V, or IX Universes?

    Get PDF
    We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the non--minimal coupling of gravity and the scalar field. The analytical results that we found for the Brans-Dicke (BD) theory are now applied to the IG theory which has ω1\omega \ll 1 (ω\omega being the square ratio of the Higgs to Planck mass) in a cosmological era in which the IG--potential is not significant. We find that the isotropization mechanism crucially depends on the value of ω\omega. Its smallness also permits inflationary solutions. For the Bianch V model inflation due to the Higgs potential takes place afterwads, and subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1

    Impact of interface energetic alignment and mobile ions on charge carrier accumulation and extraction in p‐i‐n perovskite solar cells

    Get PDF
    Understanding the kinetic competition between charge extraction and recombination, and how this is impacted by mobile ions, remains a key challenge in perovskite solar cells (PSCs). Here, this issue is addressed by combining operando photoluminescence (PL) measurements, which allow the measurement of real-time PL spectra during current–voltage (J–V) scans under 1-sun equivalent illumination, with the results of drift-diffusion simulations. This operando PL analysis allows direct comparison between the internal performance (recombination currents and quasi-Fermi-level-splitting (QFLS)) and the external performance (J–V) of a PSC during operation. Analyses of four PSCs with different electron transport materials (ETMs) quantify how a deeper ETM LUMO induces greater interfacial recombination, while a shallower LUMO impedes charge extraction. Furthermore, it is found that a low ETM mobility leads to charge accumulation in the perovskite under short-circuit conditions. However, thisalone cannot explain the remarkably high short-circuit QFLS of over 1 eV which is observed in all devices. Instead, drift-diffusion simulations allow this effect to be assigned to the presence of mobile ions which screen the internal electric field at short-circuit and lead to a reduction in the short-circuit current density by over 2 mA cm−2 in the best device

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of Transverse Single-Spin Asymmetries for Mid-rapidity Production of Neutral Pions and Charged Hadrons in Polarized p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.Comment: 331 authors, 6 pages text, 2 figures, 3 tables. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore