493 research outputs found

    Physical State of Water in Plant Xylem Vessels

    Get PDF
    The vapor pressure psychrometer was used as a tool to study the physical state of water in plant xylem vessels. The experimental procedure involved measuring the change in diffusion pressure deficit (DPD) of corn and tomato plants when the stem was cut. When the DPD was greater than 4 bars in tomatoes and 28 bars in corn, the water in xylem vessels no longer appeared to flow in response to hydrostatic pressure gradients. The limiting value of DPD increased as the xylem radius decreased. A mechanism is suggested which describes the physical state and the movement of water through xylem tissue under high DPD. The proposal is based on the pressure difference across a curved air-water interface and on the concept of an electrostatic double layer with its associated osmotic pressure

    Processor Allocation for Optimistic Parallelization of Irregular Programs

    Full text link
    Optimistic parallelization is a promising approach for the parallelization of irregular algorithms: potentially interfering tasks are launched dynamically, and the runtime system detects conflicts between concurrent activities, aborting and rolling back conflicting tasks. However, parallelism in irregular algorithms is very complex. In a regular algorithm like dense matrix multiplication, the amount of parallelism can usually be expressed as a function of the problem size, so it is reasonably straightforward to determine how many processors should be allocated to execute a regular algorithm of a certain size (this is called the processor allocation problem). In contrast, parallelism in irregular algorithms can be a function of input parameters, and the amount of parallelism can vary dramatically during the execution of the irregular algorithm. Therefore, the processor allocation problem for irregular algorithms is very difficult. In this paper, we describe the first systematic strategy for addressing this problem. Our approach is based on a construct called the conflict graph, which (i) provides insight into the amount of parallelism that can be extracted from an irregular algorithm, and (ii) can be used to address the processor allocation problem for irregular algorithms. We show that this problem is related to a generalization of the unfriendly seating problem and, by extending Tur\'an's theorem, we obtain a worst-case class of problems for optimistic parallelization, which we use to derive a lower bound on the exploitable parallelism. Finally, using some theoretically derived properties and some experimental facts, we design a quick and stable control strategy for solving the processor allocation problem heuristically.Comment: 12 pages, 3 figures, extended version of SPAA 2011 brief announcemen

    On the adiabatic behaviour for a Wigner-Weisskopf atom (Spectral and Scattering Theory and Related Topics)

    Get PDF
    In this research announcement we present some recent results of the authors on the adiabatic theorem for a system without a spectral gap [4]

    Critical Currents and Vortex States at Fractional Matching Fields in Superconductors with Periodic Pinning

    Full text link
    We study vortex states and dynamics in 2D superconductors with periodic pinning at fractional sub-matching fields using numerical simulations. For square pinning arrays we show that ordered states form at 1/1, 1/2, and 1/4 filling fractions while only partially ordered states form at other filling fractions, such as 1/3 and 1/5, in agreement with recent imaging experiments. For triangular pinning arrays we observe matching effects at filling fractions of 1/1, 6/7, 2/3, 1/3, 1/4, 1/6, and 1/7. For both square and triangular pinning arrays we also find that, for certian sub-matching fillings, vortex configurations depend on pinning strength. For weak pinning, ordering in which a portion of the vortices are positioned between pinning sites can occur. Depinning of the vortices at the matching fields, where the vortices are ordered, is elastic while at the incommensurate fields the motion is plastic. At the incommensurate fields, as the applied driving force is increased, there can be a transition to elastic flow where the vortices move along the pinning sites in 1D channels and a reordering transition to a triangular or distorted triangular lattice. We also discuss the current-voltage curves and how they relate to the vortex ordering at commensurate and incommensurate fields.Comment: 14 figure

    On the warp drive space-time

    Get PDF
    In this paper the problem of the quantum stability of the two-dimensional warp drive spacetime moving with an apparent faster than light velocity is considered. We regard as a maximum extension beyond the event horizon of that spacetime its embedding in a three-dimensional Minkowskian space with the topology of the corresponding Misner space. It is obtained that the interior of the spaceship bubble becomes then a multiply connected nonchronal region with closed timelike curves and that the most natural vacuum allows quantum fluctuations which do not induce any divergent behaviour of the re-normalized stress-energy tensor, even on the event (Cauchy) chronology horizon. In such a case, the horizon encloses closed timelike curves only at scales close to the Planck length, so that the warp drive satisfies the Ford's negative energy-time inequality. Also found is a connection between the superluminal two-dimensional warp drive space and two-dimensional gravitational kinks. This connection allows us to generalize the considered Alcubierre metric to a standard, nonstatic metric which is only describable on two different coordinate patchesComment: 7 pages, minor comment on chronology protection added, RevTex, to appear in Phys. Rev.

    Treatment planning for patients with low rectal cancer in a multicenter prospective organ preservation study

    Get PDF
    Background Non-surgical management of rectal cancer relies on (chemo)radiotherapy as the definitive treatment modality. This study reports and evaluates the clinical high dose radiotherapy treatment plans delivered to patients with low resectable rectal cancer in a Danish multicenter trial. Methods The Danish prospective multicenter phase II Watchful Waiting 2 trial (NCT02438839) investigated definitive chemoradiation for non-surgical management of low rectal cancer. Three Danish centers participated in the trial and committed to protocol-specified treatment planning and delivery requirements. The protocol specified a dose of 50.4 Gy in 28 fractions to the elective volume (CTV-/PTV-E) and a concomitant boost of 62 Gy in 28 fractions to the primary target volume (CTV-/PTV-T). Results The trial included 108 patients, of which 106 treatment plans were available for retrospective analysis. Dose coverage planning goals for the main target structures were fulfilled for 94% of the treatment plans. However, large intercenter differences in doses to organs-at-risk (OARs) were seen, especially for the intestines. Five patients had a V60Gy>10 cm3 for the intestines and two patients for the bladder. Conclusion Prescribed planning goals for target coverage were fulfilled for 94% of the treatment plans, however analysis of OAR doses and volumes indicated intercenter variations. Dose escalation to 62 Gy (as a concomitant boost to the primary tumor) introduced no substantial high dose volumes (>60 Gy) to the bladder and intestines. The treatment planning goals may be used for future prospective evaluation of highdose radiotherapy for organ preservation for low rectal cancer

    Focused methane migration formed pipe structures in permeable sandstones: Insights from uncrewed aerial vehicle-based digital outcrop analysis in Varna, Bulgaria

    Get PDF
    Focused fluid flow shapes the evolution of marine sedimentary basins by transferring fluids and pressure across geological formations. Vertical fluid conduits may form where localized overpressure breaches a cap rock (permeability barrier) and thereby transports overpressured fluids towards shallower reservoirs or the surface. Field outcrops of an Eocene fluid flow system at Pobiti Kamani and Beloslav Quarry (ca 15 km west of Varna, Bulgaria) reveal large carbonate‐cemented conduits, which formed in highly permeable, unconsolidated, marine sands of the northern Tethys Margin. An uncrewed aerial vehicle with an RGB sensor camera produces ortho‐rectified image mosaics, digital elevation models and point clouds of the two kilometre‐scale outcrop areas. Based on these data, geological field observations and petrological analysis of rock/core samples; fractures and vertical fluid conduits were mapped and analyzed with centimetre accuracy. The results show that both outcrops comprise several hundred carbonate‐cemented fluid conduits (pipes), oriented perpendicular to bedding, and at least seven bedding‐parallel calcite cemented interbeds which differ from the hosting sand formation only by their increased amount of cementation. The observations show that carbonate precipitation likely initiated around areas of focused fluid flow, where methane entered the formation from the underlying fractured subsurface. These first carbonates formed the outer walls of the pipes and continued to grow inward, leading to self‐sustaining and self‐reinforcing focused fluid flow. The results, supported by literature‐based carbon and oxygen isotope analyses of the carbonates, indicate that ambient seawater and advected fresh/brackish water were involved in the carbonate precipitation by microbial methane oxidation. Similar structures may also form in modern settings where focused fluid flow advects fluids into overlying sand‐dominated formations, which has wide implications for the understanding of how focusing of fluids works in sedimentary basins with broad consequences for the migration of water, oil and gas

    Diminished Superoxide Generation Is Associated With Respiratory Chain Dysfunction and Changes in the Mitochondrial Proteome of Sensory Neurons From Diabetic Rats

    Get PDF
    Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.OBJECTIVE Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. RESEARCH DESIGN AND METHODS Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). RESULTS Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. CONCLUSIONS Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.This work was supported by grants from the Juvenile Diabetes Research Foundation (#1-2008-280) and the National Institutes of Health to R.T.D. (grants NS-054847 and DK-073594). E.A. was supported by a grant from the National Science and Engineering Research Council (#3311686-06) to P.F. and subsequently by a postgraduate scholarship from the Manitoba Health Research Council. S.K.R.C. and E.Z. were supported by grants to P.F. from the Canadian Institutes for Health Research (#MOP-84214) and the Juvenile Diabetes Research Foundation (#1-2008-193). D.R.S. was supported by a grant to P.F. from the Manitoba Health Research Council. This work was also funded by the St. Boniface General Hospital and Research Foundation
    corecore