168 research outputs found

    Unitarity Restoration in the Presence of Closed Timelike Curves

    Full text link
    A proposal is made for a mathematically unambiguous treatment of evolution in the presence of closed timelike curves. In constrast to other proposals for handling the naively nonunitary evolution that is often present in such situations, this proposal is causal, linear in the initial density matrix and preserves probability. It provides a physically reasonable interpretation of invertible nonunitary evolution by redefining the final Hilbert space so that the evolution is unitary or equivalently by removing the nonunitary part of the evolution operator using a polar decomposition.Comment: LaTeX, 17pp, Revisions: Title change, expanded and clarified presentation of original proposal, esp. with regard to Heisenberg picture and remaining in original Hilbert spac

    Unitarity of Quantum Theory and Closed Time-Like Curves

    Get PDF
    Interacting quantum fields on spacetimes containing regions of closed timelike curves (CTCs) are subject to a non-unitary evolution XX. Recently, a prescription has been proposed, which restores unitarity of the evolution by modifying the inner product on the final Hilbert space. We give a rigorous description of this proposal and note an operational problem which arises when one considers the composition of two or more non-unitary evolutions. We propose an alternative method by which unitarity of the evolution may be regained, by extending XX to a unitary evolution on a larger (possibly indefinite) inner product space. The proposal removes the ambiguity noted by Jacobson in assigning expectation values to observables localised in regions spacelike separated from the CTC region. We comment on the physical significance of the possible indefiniteness of the inner product introduced in our proposal.Comment: 13 pages, LaTeX. Final revised paper to be published in Phys Rev D. Some changes are made to expand our discussion of Anderson's Proposal for restoring unitarit

    Processor Allocation for Optimistic Parallelization of Irregular Programs

    Full text link
    Optimistic parallelization is a promising approach for the parallelization of irregular algorithms: potentially interfering tasks are launched dynamically, and the runtime system detects conflicts between concurrent activities, aborting and rolling back conflicting tasks. However, parallelism in irregular algorithms is very complex. In a regular algorithm like dense matrix multiplication, the amount of parallelism can usually be expressed as a function of the problem size, so it is reasonably straightforward to determine how many processors should be allocated to execute a regular algorithm of a certain size (this is called the processor allocation problem). In contrast, parallelism in irregular algorithms can be a function of input parameters, and the amount of parallelism can vary dramatically during the execution of the irregular algorithm. Therefore, the processor allocation problem for irregular algorithms is very difficult. In this paper, we describe the first systematic strategy for addressing this problem. Our approach is based on a construct called the conflict graph, which (i) provides insight into the amount of parallelism that can be extracted from an irregular algorithm, and (ii) can be used to address the processor allocation problem for irregular algorithms. We show that this problem is related to a generalization of the unfriendly seating problem and, by extending Tur\'an's theorem, we obtain a worst-case class of problems for optimistic parallelization, which we use to derive a lower bound on the exploitable parallelism. Finally, using some theoretically derived properties and some experimental facts, we design a quick and stable control strategy for solving the processor allocation problem heuristically.Comment: 12 pages, 3 figures, extended version of SPAA 2011 brief announcemen

    Unitarity and Causality in Generalized Quantum Mechanics for Non-Chronal Spacetimes

    Full text link
    Spacetime must be foliable by spacelike surfaces for the quantum mechanics of matter fields to be formulated in terms of a unitarily evolving state vector defined on spacelike surfaces. When a spacetime cannot be foliated by spacelike surfaces, as in the case of spacetimes with closed timelike curves, a more general formulation of quantum mechanics is required. In such generalizations the transition matrix between alternatives in regions of spacetime where states {\it can} be defined may be non-unitary. This paper describes a generalized quantum mechanics whose probabilities consistently obey the rules of probability theory even in the presence of such non-unitarity. The usual notion of state on a spacelike surface is lost in this generalization and familiar notions of causality are modified. There is no signaling outside the light cone, no non-conservation of energy, no ``Everett phones'', and probabilities of present events do not depend on particular alternatives of the future. However, the generalization is acausal in the sense that the existence of non-chronal regions of spacetime in the future can affect the probabilities of alternatives today. The detectability of non-unitary evolution and violations of causality in measurement situations are briefly considered. The evolution of information in non-chronal spacetimes is described.Comment: 40pages, UCSBTH92-0

    Prophetic Reading: Sisterhood and Psychoanalysis in H.D.’s HERmione

    Get PDF
    This article offers a comparative reading of H.D.’s 1927 kunstlerroman à clef, HERmione, and Freud’s Dora alongside an intertextual close reading of its dense web of literary allusions in order to argue that it offers a sustained critique of Freudian psychoanalysis and an alternative origin story for the condition of hysteria. Drawing on the notion of prophecy as it is thematised in the novel, the article demonstrates H.D.’s prefiguring of Juliet Mitchell’s recent reconfiguration of hysteria as a response to, replacement by, or failure of identification with a sibling

    Antiflow of kaons in relativistic heavy ion collisions

    Get PDF
    We compare relativistic transport model calculations to recent data on the sideward flow of neutral strange K^0_s mesons for Au+Au collisions at 6 AGeV. A soft nuclear equation of state is found to describe very well the positive proton flow data measured in the same experiment. In the absence of kaon potential, the K^0 flow pattern is similar to that of protons. The kaon flow becomes negative if a repulsive kaon potential determined from the impulse approximation is introduced. However, this potential underestimates the data which exhibits larger antiflow. An excellent agreement with the data is obtained when a relativistic scalar-vector kaon potential, that has stronger density dependence, is used. We further find that the transverse momentum dependence of directed and elliptic flow is quite sensitive to the kaon potential in dense matter.Comment: 5 pages, Revtex, 4 figure

    On the EPR-type Entanglement in the Experiments of Scully et Al. I. The Micromaser Case and Delayed-choice Quantum Erasure

    Full text link
    Delayed-choice erasure is investigated in two-photon two-slit experiments that are generalizations of the micromaser experiment of Scully et al. [Scully, M. O. et al. Nature 351, 111-116 (1991)]. Applying quantum mechanics to the localization detector, it is shown that erasure with delayed choice in the sense of Scully, has an analogous structure as simple erasure. The description goes beyond probabilities. The EPR-type disentanglement, consisting in two mutually incompatible distant measurements, is used as a general framework in both parts of this study. Two simple coherence cases are shown to emerge naturally, and they are precisely the two experiments of Scully et al. The treatment seems to require the relative-reality-of-unitarily-evolving-state (RRUES) approach. Besides insight in the exoeriments, this study has also the goal of insight in quantum mechanics. The question is if it can be more than just a "book-keeping device" for calculating probabilities as Scully et al. modestly and cautiously claim.Comment: Latex2e, no figures, this manuscript is the first part of a study in two part

    Model-independent measurement of t\boldsymbol{t}-channel single top quark production in ppˉ\boldsymbol{p\bar{p}} collisions at s=1.96\boldsymbol{\sqrt{s}=1.96} TeV

    Full text link
    We present a model-independent measurement of tt-channel electroweak production of single top quarks in \ppbar collisions at s=1.96  TeV\sqrt{s}=1.96\;\rm TeV. Using 5.4  fb−15.4\;\rm fb^{-1} of integrated luminosity collected by the D0 detector at the Fermilab Tevatron Collider, and selecting events containing an isolated electron or muon, missing transverse energy and one or two jets originating from the fragmentation of bb quarks, we measure a cross section \sigma({\ppbar}{\rargap}tqb+X) = 2.90 \pm 0.59\;\rm (stat+syst)\; pb for a top quark mass of 172.5  GeV172.5\;\rm GeV. The probability of the background to fluctuate and produce a signal as large as the one observed is 1.6×10−81.6\times10^{-8}, corresponding to a significance of 5.5 standard deviations.Comment: 8 pages, 4 figures, submitted to Phys. Lett.

    Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review

    Full text link
    • 

    corecore