213 research outputs found

    Роль держави у формуванні та реалізації інноваційної моделі розвитку економіки України

    Get PDF
    Статтю присвячено питанням інноваційного розвитку економіки в контексті сучасної теорії посилення ролі держави в регулюванні соціально-економічних процесів. Розкрито сутність сучасної теорії державного регулювання та її вплив на інноваційний розвиток економіки України.Статья посвящена вопросам инновационного развития экономики в контексте современной теории усиления роли государства в регулировании социально-экономических процессов. Раскрыта сущность современной теории государственного регулирования и ее влияние на инновационное развитие экономики Украины.Article is devoted to innovative development of economy in the context of the modern theory of the role of the state in regulating social and economic processes. The essence of the modern theory of government regulation and its impact on innovation development of economy of Ukraine

    Drug-induced Fanconi syndrome associated with fumaric acid esters treatment for psoriasis: A case series

    Get PDF
    Background: Fumaric acid esters (FAEs), an oral immunomodulating treatment for psoriasis and multiple sclerosis, have been anecdotally associated with proximal renal tubular dysfunction due to a drug-induced Fanconi syndrome. Few data are available on clinical outcomes of FAE-induced Fanconi syndrome. Methods: Descriptive case series with two cases of Fanconi syndrome associated with FAE treatment diagnosed at two Dutch university nephrology departments, three cases reported at the Dutch and German national pharmacovigilance databases and six previously reported cases. Results: All 11 cases involved female patients with psoriasis. The median age at the time of onset was 38 years [interquartile range (IQR) 37-46]. Patients received long-term FAEs treatment with a median treatment duration of 60 months (IQR 28-111). Laboratory tests were typically significant for low serum levels of phosphate and uric acid, while urinalysis showed glycosuria and proteinuria. Eight (73%) patients had developed a hypophosphataemic osteomalacia and three (27%) had pathological bone fractures. All patients discontinued FAEs, while four (36%) patients were treated with supplementation of phosphate and/or vitamin D. Five (45%) patients had persisting symptoms despite FAEs discontinuation. Conclusions: FAEs treatment can cause drug-induced Fanconi syndrome, but the association has been reported infrequently. Female patients with psoriasis treated long term with FAEs seem to be particularly at risk. Physicians treating patients with FAEs should be vigilant and monitor for the potential occurrence of Fanconi syndrome. Measurement of the urinary albumin:total protein ratio is a suggested screening tool for tubular proteinuria in Fanconi syndrome

    Tunneling Time Distribution by means of Nelson's Quantum Mechanics and Wave-Particle Duality

    Get PDF
    We calculate a tunneling time distribution by means of Nelson's quantum mechanics and investigate its statistical properties. The relationship between the average and deviation of tunneling time suggests the exsistence of ``wave-particle duality'' in the tunneling phenomena.Comment: 14 pages including 11 figures, the text has been revise

    Gamma-ray blazars: the view from AGILE

    Full text link
    During the first 3 years of operation the Gamma-Ray Imaging Detector onboard the AGILE satellite detected several blazars in a high gamma-ray activity: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421, PKS 0537-441 and 4C +21.35. Thanks to the rapid dissemination of our alerts, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, and ARGO as well as radio-to-optical coverage by means of the GASP Project of the WEBT and the REM Telescope. This large multifrequency coverage gave us the opportunity to study the variability correlations between the emission at different frequencies and to obtain simultaneous spectral energy distributions of these sources from radio to gamma-ray energy bands, investigating the different mechanisms responsible for their emission and uncovering in some cases a more complex behaviour with respect to the standard models. We present a review of the most interesting AGILE results on these gamma-ray blazars and their multifrequency data.Comment: 25 pages, 10 figures, accepted for publication on Advances in Space Research. Talk presented at the 38th COSPAR Scientific Assembly (Bremen, Germany; July 18-25, 2010

    Potential Scattering in Dirac Field Theory

    Full text link
    We develop the potential scattering of a spinor within the context of perturbation field theory. As an application, we reproduce, up to second order in the potential, the diffusion results for a potential barrier of quantum mechanics. An immediate consequence is a simple generalization to arbitrary potential forms, a feature not possible in quantum mechanics.Comment: 7 page

    The Exact Correspondence between Phase Times and Dwell Times in a Symmetrical Quantum Tunneling Configuration

    Full text link
    The general and explicit relation between the phase time and the dwell time for quantum tunneling or scattering is investigated. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, here we demonstrate that these two distinct transit time definitions give connected results where, however, the phase time (group delay) accurately describes the exact position of the scattered particles. The analytical difficulties that arise when the stationary phase method is employed for obtaining phase (traversal) times are all overcome. Multiple wave packet decomposition allows us to recover the exact position of the reflected and transmitted waves in terms of the phase time, which, in addition to the exact relation between the phase time and the dwell time, leads to right interpretation for both of them.Comment: 11 pages, 2 figure

    Small Corrections to the Tunneling Phase Time Formulation

    Full text link
    After reexamining the above barrier diffusion problem where we notice that the wave packet collision implies the existence of {\em multiple} reflected and transmitted wave packets, we analyze the way of obtaining phase times for tunneling/reflecting particles in a particular colliding configuration where the idea of multiple peak decomposition is recovered. To partially overcome the analytical incongruities which frequently rise up when the stationary phase method is adopted for computing the (tunneling) phase time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a unidimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted wave components so that the conditions for applying the stationary phase principle are totally recovered. Lessons concerning the use of the stationary phase method are drawn.Comment: 14 pages, 3 figure

    Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites

    Full text link
    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure

    Competing orders in a magnetic field: spin and charge order in the cuprate superconductors

    Full text link
    We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin spectrum. Our results apply to phases with and without long-range spin density wave order and to the magnetic quantum critical point separating these phases. We discuss the relationship of our results to a number of recent neutron scattering measurements on the cuprate superconductors in the presence of an applied field. We compute the pinning of static charge order by the vortex cores in the `spin gap' phase where the spin order remains dynamically fluctuating, and argue that these results apply to recent scanning tunnelling microscopy (STM) measurements. We show that with a single typical set of values for the coupling constants, our model describes the field dependence of the elastic neutron scattering intensities, the absence of satellite Bragg peaks associated with the vortex lattice in existing neutron scattering observations, and the spatial extent of charge order in STM observations. We mention implications of our theory for NMR experiments. We also present a theoretical discussion of more exotic states that can be built out of the spin and charge order parameters, including spin nematics and phases with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new work of Chen and Ting; (v3) reorganized presentation for improved clarity, and added new appendix on microscopic origin; (v4) final published version with minor change
    corecore