3,029 research outputs found
Spin Polaron Effective Magnetic Model for La_{0.5}Ca_{0.5}MnO_3
The conventional paradigm of charge order for La_{1-x}Ca_xMnO_3 for x=0.5 has
been challenged recently by a Zener polaron picture emerging from experiments
and theoretical calculations. The effective low energy Hamiltonian for the
magnetic degrees of freedom has been found to be a cubic Heisenberg model, with
ferromagnetic nearest neighbor and frustrating antiferromagnetic next nearest
neighbor interactions in the planes, and antiferromagnetic interaction between
planes. With linear spin wave theory and diagonalization of small clusters up
to 27 sites we find that the behavior of the model interpolates between the A
and CE-type magnetic structures when a frustrating intraplanar interaction is
tuned. The values of the interactions calculated by ab initio methods indicate
a possible non-bipartite picture of polaron ordering differing from the
conventional one.Comment: 21 pages and 8 figures (included), Late
Density Functional Theory for the Photoionization Dynamics of Uracil
Photoionization dynamics of the RNA base Uracil is studied in the framework
of Density Functional Theory (DFT). The photoionization calculations take
advantage of a newly developed parallel version of a multicentric approach to
the calculation of the electronic continuum spectrum which uses a set of
B-spline radial basis functions and a Kohn-Sham density functional hamiltonian.
Both valence and core ionizations are considered. Scattering resonances in
selected single-particle ionization channels are classified by the symmetry of
the resonant state and the peak energy position in the photoelectron kinetic
energy scale; the present results highlight once more the site specificity of
core ionization processes. We further suggest that the resonant structures
previously characterized in low-energy electron collision experiments are
partly shifted below threshold by the photoionization processes. A critical
evaluation of the theoretical results providing a guide for future experimental
work on similar biosystems
Distinguishing N-acetylneuraminic acid linkage isomers on glycopeptides by ion mobility-mass spectrometry
Differentiating the structure of isobaric glycopeptides represents a major
challenge for mass spectrometry-based characterisation techniques. Here we
show that the regiochemistry of the most common N-acetylneuraminic acid
linkages of N-glycans can be identified in a site-specific manner from
individual glycopeptides using ion mobility-mass spectrometry analysis of
diagnostic fragment ions
Neutrino Physics and Nuclear Axial Two-Body Interactions
We consider the counter-term describing isoscalar axial two-body currents in
the nucleon-nucleon interaction, L1A, in the effective field theory approach.
We determine this quantity using the solar neutrino data. We investigate the
variation of L1A when different sets of data are used.Comment: 8 pages with 4 figures. To be published in the Proceedings of the
Conference "Blueprints For The Nucleus: From First Principles to Collective
Motion" held at Feza Gursey Institute, Istanbul, Turkey; May 17 -22, 200
Fitting Ranked English and Spanish Letter Frequency Distribution in U.S. and Mexican Presidential Speeches
The limited range in its abscissa of ranked letter frequency distributions
causes multiple functions to fit the observed distribution reasonably well. In
order to critically compare various functions, we apply the statistical model
selections on ten functions, using the texts of U.S. and Mexican presidential
speeches in the last 1-2 centuries. Dispite minor switching of ranking order of
certain letters during the temporal evolution for both datasets, the letter
usage is generally stable. The best fitting function, judged by either
least-square-error or by AIC/BIC model selection, is the Cocho/Beta function.
We also use a novel method to discover clusters of letters by their
observed-over-expected frequency ratios.Comment: 7 figure
GNO Solar Neutrino Observations: Results for GNOI
We report the first GNO solar neutrino results for the measuring period GNOI,
solar exposure time May 20, 1998 till January 12, 2000. In the present
analysis, counting results for solar runs SR1 - SR19 were used till April 4,
2000. With counting completed for all but the last 3 runs (SR17 - SR19), the
GNO I result is [65.8 +10.2 -9.6 (stat.) +3.4 -3.6 (syst.)]SNU (1sigma) or
[65.8 + 10.7 -10.2 (incl. syst.)]SNU (1sigma) with errors combined. This may be
compared to the result for Gallex(I-IV), which is [77.5 +7.6 -7.8 (incl.
syst.)] SNU (1sigma). A combined result from both GNOI and Gallex(I-IV)
together is [74.1 + 6.7 -6.8 (incl. syst.)] SNU (1sigma).Comment: submitted to Physics Letters B, June 2000. PACS: 26.65. +t ; 14.60
Pq. Corresponding author: [email protected] ; [email protected]
Numerically improved computational scheme for the optical conductivity tensor in layered systems
The contour integration technique applied to calculate the optical
conductivity tensor at finite temperatures in the case of layered systems
within the framework of the spin-polarized relativistic screened
Korringa-Kohn-Rostoker band structure method is improved from the computational
point of view by applying the Gauss-Konrod quadrature for the integrals along
the different parts of the contour and by designing a cumulative special points
scheme for two-dimensional Brillouin zone integrals corresponding to cubic
systems.Comment: 17 pages, LaTeX + 4 figures (Encapsulated PostScript), submitted to
J. Phys.: Condensed Matter (19 Sept. 2000
Antisymmetric Higgs representation in SO(10) for neutrinos
A Model based on SO(10) grand unified theory (GUT) and supersymmetry is
presented to describe observed phenomena for neutrinos. The large mixing angles
among different generations, together with the small masses, are attributed to
the Higgs boson structure at the GUT energy scale. Quantitative discussions for
these observables are given, taking into account their energy evolution.Comment: 10 page
Investigating the timecourse of accessing conversational implicatures during incremental sentence interpretation
Many contextual inferences in utterance interpretation are explained as following from the nature of conversation and the assumption that participants are rational. Recent psycholinguistic research has focussed on certain of these âGriceanâ inferences and have revealed that comprehenders can access them in online interpretation. However there have been mixed results as to the time-course of access. Some results show that Gricean inferences can be accessed very rapidly, as rapidly as any other contextually specified information (Sedivy, 2003; Grodner, Klein, Carbery, & Tanenhaus, 2010); while other studies looking at the same kind of inference suggest that access to Gricean inferences are delayed relative to other aspects of semantic interpretation (Huang & Snedeker, 2009; in press). While previous timecourse research has focussed on Gricean inferences that support the online assignment of reference to definite expressions, the study reported here examines the timecourse of access to scalar implicatures, which enrich the meaning of an utterance beyond the semantic interpretation. Even if access to Gricean inference in support of reference assignment may be rapid, it is still unknown whether genuinely enriching scalar implicatures are delayed. Our results indicate that scalar implicatures are accessed as rapidly as other contextual inferences. The implications of our results are discussed in reference to the architecture of language comprehension
- âŠ