30,794 research outputs found
Isogeometric analysis for functionally graded microplates based on modified couple stress theory
Analysis of static bending, free vibration and buckling behaviours of
functionally graded microplates is investigated in this study. The main idea is
to use the isogeometric analysis in associated with novel four-variable refined
plate theory and quasi-3D theory. More importantly, the modified couple stress
theory with only one material length scale parameter is employed to effectively
capture the size-dependent effects within the microplates. Meanwhile, the
quasi-3D theory which is constructed from a novel seventh-order shear
deformation refined plate theory with four unknowns is able to consider both
shear deformations and thickness stretching effect without requiring shear
correction factors. The NURBS-based isogeometric analysis is integrated to
exactly describe the geometry and approximately calculate the unknown fields
with higher-order derivative and continuity requirements. The convergence and
verification show the validity and efficiency of this proposed computational
approach in comparison with those existing in the literature. It is further
applied to study the static bending, free vibration and buckling responses of
rectangular and circular functionally graded microplates with various types of
boundary conditions. A number of investigations are also conducted to
illustrate the effects of the material length scale, material index, and
length-to-thickness ratios on the responses of the microplates.Comment: 57 pages, 14 figures, 18 table
Co-doping red-emitting Sr2Si5N8:Eu2+ into yellow-emitting phosphor-packaging for enhancing the optical properties of the 8500 K remote-phosphor packaging wleds
In the last decades, WLEDs attract more and more consideration in both academic and industrial purposes because of its advantages such as fast response time, environment friendliness, small size, long lifetime, and high efficiency. In this research, by doping the red-emitting Sr2Si5N8:Eu2+ phosphor particles into yellow-emitting YAG:Ce phosphor-packaging, a new recommendation for enhancing the optical properties (color uniformity, color rendering index, and lumen output) of the 8500 K remote-phosphor packaging WLEDs is presented, investigated, and demonstrated. By using Mat Lab and Light Tools software based on Mie Theory, the obtained results show that the optical properties of the 8500 K remote-phosphor packaging WLEDs significantly depended on Sr2Si5N8:Eu2+ concentration. The results have provided a potential practical recommendation for manufacturing remote-phosphor W-LEDs.Web of Science1341034102
Architecture for public safety network using D2D communication
Device to Device (D2D) communication has been proposed as an underlay to Long-Term evolution (LTE) network as a means of harvesting the proximity, reuse and hop gains. However, D2D communication can also serve as a technology for providing public safety and disaster relief services. In this article, the basic concepts of D2D communications are first introduced and then existing fundamental works on disaster communication are discussed. We focus on the performance of the network architecture by utilizing the relay assisted transmission which can effectively enhance the capacity and power saving of the network. We also propose the distance based strategy to reduce the computational complexity and power transmission. Finally, simulation results are provided to verify the proposed architecture
Inhomogeneous magnetism in single crystalline SrCuIrO: Implications to phase-separation concepts
The single crystalline form of an insulator, SrCuIrO, is
shown to exhibit unexpectedly more than one magnetic transition (at 5 and 19 K)
with spin-glass-like magnetic susceptibility behaviour. On the basis of this
finding, viz., inhomogeneous magnetism in a chemically homogeneous material, we
propose that the idea of "phase- separation" described for manganites [1] is
more widespread in different ways. The observed experimental features enable us
to make a comparison with the predictions of a recent toy model [2] on {\it
magnetic} phase separation in an insulating environment.Comment: 4 pages, 4 figure
Detection of lithium in nearby young late-M dwarfs
Late M-type dwarfs in the solar neighborhood include a mixture of very
low-mass stars and brown dwarfs which is difficult to disentangle due to the
lack of constraints on their age such as trigonometric parallax, lithium
detection and space velocity.
We search for young brown dwarf candidates among a sample of 28 nearby late-M
dwarfs with spectral types between M5.0 and M9.0, and we also search for debris
disks around three of them.
Based on theoretical models, we used the color , the -band absolute
magnitude and the detection of the Li I 6708 doublet line as a strong
constraint to estimate masses and ages of our targets. For the search of debris
disks, we observed three targets at submillimeter wavelength of 850 m.
We report here the first clear detections of lithium absorption in four
targets and a marginal detection in one target. Our mass estimates indicate
that two of them are young brown dwarfs, two are young brown dwarf candidates
and one is a young very low-mass star. The closest young field brown dwarf in
our sample at only 15 pc is an excellent benchmark for further studying
physical properties of brown dwarfs in the range 100150 Myr. We did not
detect any debris disks around three late-M dwarfs, and we estimated upper
limits to the dust mass of debris disks around them.Comment: 10 pages, 5 figures, accepted for publication in Astronomy and
Astrophysic
Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit
We present the first experimental realization of a widely frequency tunable,
non-degenerate three-wave mixing device for quantum signals at GHz frequency.
It is based on a new superconducting building-block consisting of a ring of
four Josephson junctions shunted by a cross of four linear inductances. The
phase configuration of the ring remains unique over a wide range of magnetic
fluxes threading the loop. It is thus possible to vary the inductance of the
ring with flux while retaining a strong, dissipation-free, and noiseless
non-linearity. The device has been operated in amplifier mode and its noise
performance has been evaluated by using the noise spectrum emitted by a voltage
biased tunnel junction at finite frequency as a test signal. The unprecedented
accuracy with which the crossover between zero-point-fluctuations and shot
noise has been measured provides an upper-bound for the noise and dissipation
intrinsic to the device.Comment: Accepted for Physical Review Letters. Supplementary material can be
found in the source packag
Benchmark generator for CEC 2009 competition on dynamic optimization
Evolutionary algorithms(EAs) have been widely applied to solve stationary optimization problems. However, many real-world applications are actually dynamic. In order to study the performance of EAs in dynamic environments, one important task is to develop proper dynamic benchmark problems. Over the years, researchers have applied a number of dynamic test problems to compare the performance of EAs in dynamic environments, e.g., the “moving peaks ” benchmark (MPB) proposed by Branke [1], the DF1 generator introduced by Morrison and De Jong [6], the singleand multi-objective dynamic test problem generator by dynamically combining different objective functions of exiting stationary multi-objective benchmark problems suggested by Jin and Sendhoff [2], Yang and Yao’s exclusive-or (XOR) operator [10, 11, 12], Kang’s dynamic traveling salesman problem (DTSP) [3] and dynamic multi knapsack problem (DKP), etc. Though a number of DOP generators exist in the literature, there is no unified approach of constructing dynamic problems across the binary space, real space and combinatorial space so far. This report uses the generalized dynamic benchmark generator (GDBG) proposed in [4], which construct dynamic environments for all the three solution spaces. Especially, in the rea
A nanomechanical resonator shuttling single electrons at radio frequencies
We observe transport of electrons through a metallic island on the tip of a
nanomechanical pendulum. The resulting tunneling current shows distinct
features corresponding to the discrete mechanical eigenfrequencies of the
pendulum. We report on measurements covering the temperature range from 300 K
down to 4.2 K. We explain the I-V curve, which differs from previous
theoretical predictions, with model calculations based on a Master equation
approach.Comment: 5 pages, 4 jpeg-figure
Monte Carlo Study of the Separation of Energy Scales in Quantum Spin 1/2 Chains with Bond Disorder
One-dimensional Heisenberg spin 1/2 chains with random ferro- and
antiferromagnetic bonds are realized in systems such as . We have investigated numerically the thermodynamic properties of a
generic random bond model and of a realistic model of by the quantum Monte Carlo loop algorithm. For the first time we
demonstrate the separation into three different temperature regimes for the
original Hamiltonian based on an exact treatment, especially we show that the
intermediate temperature regime is well-defined and observable in both the
specific heat and the magnetic susceptibility. The crossover between the
regimes is indicated by peaks in the specific heat. The uniform magnetic
susceptibility shows Curie-like behavior in the high-, intermediate- and
low-temperature regime, with different values of the Curie constant in each
regime. We show that these regimes are overlapping in the realistic model and
give numerical data for the analysis of experimental tests.Comment: 7 pages, 5 eps-figures included, typeset using JPSJ.sty, accepted for
publication in J. Phys. Soc. Jpn. 68, Vol. 3. (1999
- …