
Benchmark Generator for CEC’2009 Competition on

Dynamic Optimization

C. Li1, S. Yang1, T. T. Nguyen2, E. L. Yu5, X. Yao2, Y. Jin3

H.-G. Beyer4, and P. N. Suganthan5

October 26, 2008

1Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

2CERCIA, School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, U.K.

3Honda Research Institute Europe, 63073 Offenbach/Main, Germany
4Department of Computer Science, Vorarlberg University of Applied Sciences, Austria

5School of EEE, Nanyang Technological University, Singapore, 639798

cl160@le.ac.uk, s.yang@mcs.le.ac.uk, T.T.Nguyen@cs.bham.ac.uk,
YuLing@ntu.edu.sg, x.yao@cs.bham.ac.uk, yaochu.jin@honda-ri.de,

Hans-Georg.Beyer@fhv.at, epnsugan@ntu.edu.sg

Evolutionary algorithms(EAs) have been widely applied to solve stationary optimization
problems. However, many real-world applications are actually dynamic. In order to study the
performance of EAs in dynamic environments, one important task is to develop proper dynamic
benchmark problems.

Over the years, researchers have applied a number of dynamic test problems to compare
the performance of EAs in dynamic environments, e.g., the “moving peaks” benchmark (MPB)
proposed by Branke [1], the DF1 generator introduced by Morrison and De Jong [6], the single-
and multi-objective dynamic test problem generator by dynamically combining different objec-
tive functions of exiting stationary multi-objective benchmark problems suggested by Jin and
Sendhoff [2], Yang and Yao’s exclusive-or (XOR) operator [10, 11, 12], Kang’s dynamic traveling
salesman problem (DTSP) [3] and dynamic multi knapsack problem (DKP), etc.

Though a number of DOP generators exist in the literature, there is no unified approach of
constructing dynamic problems across the binary space, real space and combinatorial space so
far. This report uses the generalized dynamic benchmark generator (GDBG) proposed in [4],
which construct dynamic environments for all the three solution spaces. Especially, in the real
space, we introduce a rotation method instead of shifting the positions of peaks as in the MPB
and DF1 generators. The rotation method can overcome the problem of unequal challenge per
change for algorithms of the MPB generator, which happens when the peak positions bounce
back from the boundary of the landscape.

This report gives two benchmark instances from the GDBG system in the real space. The
source code for the two benchmark instances and an test example using the PSO algorithm are
available at http://www.cs.le.ac.uk/people/syang/ECiDUE/DBG.tar.gz and
http://www.ntu.edu.sg/home/epnsugan/DBG.tar.gz respectively. The test functions and the
best results will also be uploaded to the Evolutionary Computation Benchmark Repository [8]
at http://www.cs.bham.ac.uk/research/projects/ecb/.

The definition of two benchmark instances are described in Section 2. Section 3 gives the
description of seven test problems and performance measurement is given in Section 4.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Framework of the GDBG system

DOPs can be defined as follows:
F = f(x, φ, t) (1)

where F is the optimization problem, f is the cost function, x is a feasible solution in the solution
set X, t is the real-world time, and φ is the system control parameter, which determines the
solution distribution in the fitness landscape.

In the GDBG system, the dynamism results from a deviation of solution distribution from
the current environment by tuning the system control parameters. It can be described as follows:

φ(t+ 1) = φ(t)⊕∆φ (2)

where ∆φ is a deviation from the current system control parameters. Then, we can get the new
environment at the next moment t+ 1 as follows:

f(x, φ, t+ 1) = f(x, φ(t)⊕∆φ, t) (3)

There are six change types of the system control parameters in the GDBG system. They
are small step change, large step change, random change, chaotic change, recurrent change, and
recurrent change with noise. The framework of the six change types are described as follows:

Framework of DynamicChanges

switch(change type)

case small step:
∆φ = α · ‖φ‖ · r · φseverity (4-1)

case large step:

∆φ = ‖φ‖ · (α · sign(r) + (αmax − α) · r) · φseverity (4-2)

case random:
∆φ = N(0, 1) · φseverity (4-3)

case chaotic:

φ(t+ 1) = A · (φ(t)− φmin) · (1− (φ(t)− φmin)/‖φ‖) (4-4)

case recurrent:
φ(t+ 1) = φmin + ‖φ‖(sin(

2π
P
t+ ϕ) + 1)/2 (4-5)

case recurrent with noisy:

φ(t+ 1) = φmin + ‖φ‖(sin(
2π
P
t+ ϕ) + 1)/2 +N(0, 1) · noisyseverity (4-6)

where ‖φ‖ is the change range of φ, φseverity is a constant number that indicates change severity
of φ, φmin is the minimum value of φ, noisyseverity ∈ (0, 1) is noisy severity in recurrent with
noisy change. α ∈ (0, 1) and αmax ∈ (0, 1) are constant values, which are set to 0.04 and 0.1
in the GDBG system. A logistics function is used in the chaotic change type, where A is a

2

positive constant between (1.0, 4.0), if φ is a vector, the initial values of the items in φ should
be different within ‖φ‖ in chaotic change. P is the period of recurrent change and recurrent
change with noise, ϕ is the initial phase, r is a random number in (−1, 1), sign(x) returns 1
when x is greater than 0, returns −1 when x is less than 0, otherwise, returns 0. N(0, 1) denotes
a normally distributed one dimensional random number with mean zero and standard deviation
one.

To simulate some real world problems, where the number of variables changes online over the
time processes. For example, in dynamic scheduling problem one machine might break down,
or in the routing problem you may have to add a new node into an already-planned route. On
the other hand, the performance of EAs may deteriorate quickly as the dimensionality increases
due to increasing the problem complexity and search space. In GDBG system, the number of
dimensions changes as follows:

D(t+ 1) = D(t) + sign ·∆D (5)

where ∆D is a predefined constant, which the default value of is 1. IfD(t) = Max D, sign = −1;
if D(t) = Min D, sign = 1. Max D and Min D are the maximum and minimum number of
dimensions. When the number of dimension deceases by 1, just the last dimension is removed
from the fitness landscape, the fitness landscape of the left dimensions doesn’t change. When
the number of dimension increases by 1, a new dimension with random value is added into the
fitness landscape. Dimensional change only happens following the non-dimensional change.

2 Benchmark instances

The two benchmark instances are: Dynamic rotation peak benchmark generator (DRPBG) and
Dynamic composition benchmark generator (DCBG)

2.1 Dynamic rotation peak benchmark generator

The proposed benchmark uses a similar peak-composition structure to those of MPB [1] and
DF1[6]. Given a problem f(x, φ, t), φ = (~H, ~W, ~X), where ~H, ~W and ~X denote the peak height,
width and position respectively. The function of f(x, φ, t) is defined as follows:

f(x, φ, t) =
m

max
i=1

(~Hi(t)/(1 + ~Wi(t) ·
√√√√

n∑

j=1

(xj − ~Xi
j(t))2

n
)) (6)

where m is the number of peaks, n is the number of dimensions.
~H and ~W change as follows:

~H(t+ 1) = DynamicChanges(~H(t))
~W (t+ 1) = DynamicChanges(~W (t))

where in the height change,height severity should read φ hseverity according to Eq. (4) and
‖φ h‖ is height range. Accordingly, width severity and width range should read φ wseverity and
‖φ w‖ in the width change.

A rotation matrix[7] Rij(θ) is obtained by rotating the projection of −→x in the plane i− j by
an angle θ from the i-th axis to the j-th axis. The peak position ~X is changed by the following
algorithm:

Step 1. Randomly select l dimensions (l is an even number) from the n dimensions to compose
a vector r = [r1, r2, ..., rl].

3

Step 2. For each pair of dimension r[i] and dimension r[i + 1], construct a rotation matrix
Rr[i],r[i+1](θ(t)), θ(t)=DynamicChanges(θ(t− 1)).

Step 3. A transformation matrix A(t) is obtained by:
A(t) = Rr[1],r[2](θ(t)) ·Rr[3],r[4](θ(t)) · · ·Rr[l−1],r[l](θ(t))

Step 4. ~X(t+ 1) = ~X(t) ·A(t)

where the change severity of θ (φ θseverity) is set 1 in Eq. (4), the range of θ should read
‖φ θ‖, ‖φ θ‖ ∈ (−π, π). For the value of l, if n is an even number, l = n; otherwise l = n− 1.

NOTE: For recurrent and recurrent with noisy change, ‖φ θ‖ is within (0, π/6).

2.2 Dynamic composition benchmark generator

The dynamic composition functions are extended from the static composition functions devel-
oped by Suganthan et al. [5, 9]. The composition function can be described as:

F (x, φ, t) =
m∑

i=1

(wi · (f ′i((x− ~Oi(t) +Oiold)/λi · ~Mi) + ~Hi(t))) (7)

where the system control parameter φ = (~O, ~M, ~H), F (x) is the composition function, fi(x)
is i-th basic function used to construct the composition function. m is the number of basic
functions, ~Mi is orthogonal rotation matrix for each fi(x), ~Oi(t) is the optimum of the changed
fi(x) caused by rotating the landscape at the time t. Oiold is the optimum of the original fi(x)
without any change, the Oiold is 0 for all the basic functions used in this report. The weight
value wi for each fi(x) is calculated as:

wi = exp(−sqrt(
∑n

k=1 (xk − oki + okiold)
2

2nσ2
i

))

wi =
{
wi if wi = max(wi)
wi · (1−max(wi)10) if wi 6= max(wi)

wi = wi/
m∑

i=1

wi

where σi is the converge range factor of fi(x), whose default value is 1.0, λi is the stretch factor
for each fi(x), which is defined as:

λi = σi · Xmax −Xmin

ximax − ximin
where [Xmax, Xmin]n is the search range of F (x) and [ximax, x

i
min]n is the search range of fi(x).

In Eq. (7), f ′i(x) = C · fi(x)/|f imax|, where C is a predefined constant, which is set to 2000,
and f imax is the estimated maximum value of fi(x), which is estimated as:

f imax = fi(xmax ·Mi)

In the composition DBG, ~M is initialized using the above transformation matrix construction
algorithm and then remains unchanged. The dynamism of the system control parameter ~H and
~O are changed as the parameters ~H and ~X in Dynamic rotation peak benchmark generator.

NOTE: For both DRPBG and DCBG, chaotic change of peaks locations directly operates
on the value of each dimension instead of using rotation matrix due to simulate chaotic systems
in real applications.

Five basic benchmark functions are used in the GDBG system. Table 1 shows the details of
the five functions.

4

Table 1: Details of the basic benchmark functions
name function range
Sphere f(x) =

∑n
i=1 x

2
i [-100,100]

Rastrigin f(x) =
∑n

i=1 (x2
i − 10 cos(2πxi) + 10) [-5,5]

Weierstrass f(x) =
n∑
i=1

(
kmax∑
k=0

[ak cos(2πbk(xi + 0.5))])− n
kmax∑
k=0

[ak cos(πbk)]

a = 0.5, b = 3, kmax = 20 [-0.5,0.5]
Griewank f(x) = 1

4000

∑n
i=1(xi)2 −∏n

i=1cos(xi√
i
) + 1 [-100,100]

Ackley f(x) = −20 exp(−0.2

√
1
n

n∑
i=1

x2
i)− exp(1

n

n∑
i=1

cos(2πxi)) + 20 + e [-32,32]

3 Problem definition and parameters settings

Overview of test functions on real space

F1: Rotation peak function

F2: Composition of Sphere’s function

F3: Composition of Rastrigin’s function

F4: Composition of Griewank’s function

F5: Composition of Ackley’s function

F6: Hybrid Composition function

For all test functions:

Dimension: n(fixed)= 10; n(changed)∈ [5, 15]

Search range: x ∈ [−5, 5]n

Change frequency: frequency = 10, 000 ∗ n FES

The number of changes: num change = 60

Period: p = 12

Severity of recurrent with noisy: noisyseverity = 0.8

Chaotic constant: A = 3.67

Chaotic initialization: If φ is a vector, the initial values of the items in φ should be randomly
generated using uniform distribution within ‖φ‖ in Eq. (4)

Step severity: α = 0.04

Maximum of α: αmax = 0.1

Height range: h ∈ [10, 100]

Initial height: initial height = 50

Height severity: φ hseverity = 5.0

For all composition functions:

The number of basic function m = 10

Converge range factor: σi = 1.0, i = 1, 2, · · · , n
C = 2000

5

3.1 F1: Rotation peak function

The number of peaks: m = 10, 50

Width range: w ∈ [1, 10]

Width severity: φ wseverity = 0.5

Initial width: initial width = 5

Figure 1: 3-D map for 2-D function of F1.

Properties

♠ Multi-modal

♠ Scalable

♠ Rotated

♠ The number of local optima are artificially controlled

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t),Hi(t) = maxmj Hj

3.2 F2: Composition of Sphere’s function

Basic functions: f1 − f10 =Sphere’s function

Figure 2: 3-D map for 2-D function of F2.

Properties

6

♠ Multi-modal

♠ Scalable

♠ Rotated

♠ 10 local optima

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t),Hi(t) = minmj Hj

3.3 F3:Composition of Rastrigin’s function

Basic functions: f1 − f10 =Rastrigin’s function

Figure 3: 3-D map for 2-D function of F3.

Properties

♠ Multi-modal

♠ Scalable

♠ Rotated

♠ A huge number of local optima

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t),Hi(t) = minmj Hj

3.4 F4:Composition of Griewank’s function

Basic functions: f1 − f10 =Griewank’s function

Properties

♠ Multi-modal

♠ Scalable

♠ Rotated

♠ A huge number of local optima

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t),Hi(t) = minmj Hj

7

Figure 4: 3-D map for 2-D function of F4.

Figure 5: 3-D map for 2-D function of F5.

3.5 F5:Composition of Ackley’s function

Basic functions: f1 − f10 =Ackley’s function

Properties

♠ Multi-modal

♠ Scalable

♠ Rotated

♠ A huge number of local optima

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t),Hi(t) = minmj Hj

3.6 F6:Hybrid Composition function

Basic functions: f1 − f2 =Sphere’s function
f3 − f4 =Ackley’s function f5 − f6 =Griewank’s function
f7 − f8 =Rastrigin’s function f9 − f10 =Weierstrass’s function

Properties

♠ Multi-modal

♠ Scalable

8

Figure 6: 3-D map for 2-D function of F6.

♠ Rotated

♠ A huge number of local optima

♠ Different functions properties are mixed together

♠ Sphere Functions give two flat areas for the function

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t),Hi(t) = minmj Hj

4 Evaluation Criteria

4.1 Description of the Evaluation Criteria

Problems: Function F1 − F6

Dimension: n = 10, [5− 15]

Runs/problem/change type: 20 (Do not run many 20 runs to pick the best run)

Max FES/change: 10, 000 ∗ n

Sampling frequency: s f = 100

Initialization: Uniform random initialization within the search space

Global Optimum: All problems have the global optimum within the given bounds and there
is no need to perform search outside of the given bounds for these problems.

Non-dimensional Change Detection: Algorithm should detect the non-dimensional change
by itself instead of informing the algorithm when a non-dimensional change occurs.

Dimensional Change Detection: Algorithm should be informed when a dimensional change
occurs.

Termination: Terminate when reaching num change.

1)Record absolute function error value Elast(t) = |f(xbest(t))− f(x∗(t))| after reaching

9

Max FES/change for each change.
For each change type of each function, present the following values for xbest(t) over 20 runs:

Average best, average mean, average worst values and STD.

Average best (Avg best)=
∑runs

i=1 Minnum change
j=1 Elasti,j (t)/runs

Average mean (Avg mean)=
∑runs

i=1

∑num change
j=1 Elasti,j (t)/(runs ∗ num change)

Average worst (Avg worst)=
∑runs

i=1 Maxnum change
j=1 Elasti,j (t)/runs

STD=
√

1
runs∗num change−1

∑runs
i=1

∑num change
j=1 (Elasti,j (t)−Avg mean)2

2) Convergence Graphs (or Run-length distribution graphs)
Convergence Graphs for each problem for dimension n = 10. The graph would show the median
performance of the relative value r(t) of f(xbest(t)) and f(x∗(t)) for total runs with termination
by the Total FES.
NOTE: For maximization function F1, r(t) = f(xbest(t))/f(x∗(t)), for minimization function
F2 − F6,r(t) = f(x∗(t))/f(xbest(t))

3) Parameters
We discourage participants searching for a distinct set of parameters for each problem/dimension/etc.
Please provide details on the following whenever applicable:
a) All parameters to be adjusted
b) Actual parameter values used.
c) Estimated cost of parameter tuning in terms of number of FEs
d) Corresponding dynamic ranges
e) Guidelines on how to adjust the parameters

4) Encoding
If the algorithm requires encoding, then the encoding scheme should be independent of the
specific problems and governed by generic factors such as the search ranges.

5) Overall performance marking measurement

n
10

(100)
k+1k

2

5

4

3

2

n
10

(100)

T
7
(10)T

1
(15)- - -T

6
(15)

F
2
(16)- - - F

6
(16)F

1
(20)

Performance(100)

m
10

(50) m
50

(50)

m
10

(50) m
50

(50)

T
7
(10)T

1
(15)- - -T

6
(15)

1

1

Figure 7: Overall performance marking measurement

F1 − F6: Function F1 − F6

T1−T6: Change type of small step change, large step change, random change, chaotic change,
recurrent change, and recurrent change with noise.

10

T7: Random change with changed dimension

n10 : The number of dimension of 10.

m10 and m50: The number of peaks of 10 and 50.

NOTE: The sum mark of all the nodes within a parent is 100. The mark of leaf node k is
calculated by:

markk = percentagek ∗ Σruns
i=1 Σnum change

j=1 rij/(num change ∗ runs) (8)

where k is the node number in the bottom level, k = 1, 2, ..., 49. rij = rlastij /(1+
∑S

s=1 (1− rsij)/S),
rlastij is the relative value of the best one to the global optimum after reaching Max FES/change
for each change. rsij is the relative value of the best one to the global optimum at the s − th
sampling during one change, S = Max FES/change/s f .

The weight of leaf node k is the percentage product of all the nodes from the root to leaf
node k,which is obtained by:

weightk = Πpercentagelk (9)

where lk is the parent node of leaf node k in the level l, l = 1, 2, ..., 5. All the weights of the 49
leaf nodes are listed in Table (8). The overall algorithm performance is evaluated by:

performance = Σnumber of leaf nodes
k=1 markk ∗ weightk (10)

NOTE: There are totally 49 specific test cases. For each specific case, algorithm indepen-
dently run 20 times to obtain the mark on the specific case. The overall performance is the
sum of all the mark obtained on each test case. Authors should calculate the performance of
the algorithms proposed and provide the results of average best, average mean, average worst
values and STD of the 49 test cases.

4.2 Example

System: Windows XP (SP1)
CPU: Pentium(R) 4 3.00GHz
RAM: 1 G
Language: C++
Algorithm: Particle Swarm Optimizer (PSO)

References

[1] J. Branke, Memory enhanced evolutionary algorithms for changing optimization problems,
Proc. of the 1999 Congr. on Evol. Comput, pp. 1875-1882, 1999.

[2] Y. Jin and B. Sendhoff. Constructing dynamic optimization test problems using the multi-
objective optimization concept. EvoWorkshop 2004, LNCS 3005, pp. 526-536, 2004.

[3] C. Li, M. Yang, and L. Kang. A new approach to solving dynamic TSP, Proc of the 6th
Int. Conf. on Simulated Evolution and Learning, pp. 236-243, 2006.

[4] C. Li and S. Yang. A Generalized Approach to Construct Benchmark Problems for Dynamic
Optimization, Proc. of the 7th Int. Conf. on Simulated Evolution and Learning, 2008.

[5] J. J. Liang, P. N. Suganthan and K. Deb. Novel composition test functions for numerical
global optimization. Proc. of IEEE Int. Swarm Intelligence Symp., pp. 68-75, 2005.

11

Table 2: Error Values Achieved for Problems F1

Dimension(n) Peaks(m) Errors T1 T2 T3 T4 T5 T6

10 10 Avg best
Avg worst
Avg mean
STD

50 Avg best
Avg worst
Avg mean
STD

T7(5-15) 10 Avg best — — — — —
Avg worst — — — — —
Avg mean — — — — —
STD — — — — —

50 Avg best — — — — —
Avg worst — — — — —
Avg mean — — — — —
STD — — — — —

Table 3: Error Values Achieved for Problems F2

Dimension(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best
Avg worst
Avg mean
STD

T7(5-15) Avg best — — — — —
Avg worst — — — — —
Avg mean — — — — —
STD — — — — —

Table 4: Error Values Achieved for Problems F3

Dimension(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best
Avg worst
Avg mean
STD

T7(5-15) Avg best — — — — —
Avg worst — — — — —
Avg mean — — — — —
STD — — — — —

12

Table 5: Error Values Achieved for Problems F4

Dimension(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best
Avg worst
Avg mean
STD

T7(5-15) Avg best — — — — —
Avg worst — — — — —
Avg mean — — — — —
STD — — — — —

Table 6: Error Values Achieved for Problems F5

Dimension(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best
Avg worst
Avg mean
STD

T7(5-15) Avg best — — — — —
Avg worst — — — — —
Avg mean — — — — —
STD — — — — —

Table 7: Error Values Achieved for Problems F6

Dimension(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best
Avg worst
Avg mean
STD

T7(5-15) Avg best — — — — —
Avg worst — — — — —
Avg mean — — — — —
STD — — — — —

Table 8: Algorithm Overall Performance
F1(10) F1(50) F2 F3 F4 F5 F6

T1 ()*0.015 ()*0.015 ()*0.024 ()*0.024 ()*0.024 ()*0.024 ()*0.024
T2 ()*0.015 ()*0.015 ()*0.024 ()*0.024 ()*0.024 ()*0.024 ()*0.024
T3 ()*0.015 ()*0.015 ()*0.024 ()*0.024 ()*0.024 ()*0.024 ()*0.024
T4 ()*0.015 ()*0.015 ()*0.024 ()*0.024 ()*0.024 ()*0.024 ()*0.024
T5 ()*0.015 ()*0.015 ()*0.024 ()*0.024 ()*0.024 ()*0.024 ()*0.024
T6 ()*0.015 ()*0.015 ()*0.024 ()*0.024 ()*0.024 ()*0.024 ()*0.024
T7 ()*0.01 ()*0.01 ()*0.016 ()*0.016 ()*0.016 ()*0.016 ()*0.016
Mark
Performance(sum the mark obtained for each case and multiply by 100):

13

[6] R. W. Morrison and K. A. De Jong. A test problem generator for non-stationary environ-
ments, Proc. of the 1999 Congr. on Evol. Comput., pp. 2047-2053, 1999.

[7] R. Salomon, Reevaluating genetic algorithm performance under coordinate rotation of
benchmark functions; A survey of some theoretical and practical aspects of genetic al-
gorithms, BioSystems, vol. 39, no. 3, pp. 263-278, 1996.

[8] B. Sendhoff, M. Roberts and X. Yao. Evolutionary computation benchmarking repository,
IEEE Computational Intelligence Magazine, 1(4): 50-51, November 2006.

[9] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and S. Tiwari. Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on real-parameter
optimization. Technical Report, Nanyang Technological University, Singapore, 2005.

[10] S. Yang. Non-stationary problem optimization using the primal-dual genetic algorithm,
Proc. of the 2003 IEEE Congr. on Evol. Comput., pp. 2246-2253, 2003.

[11] S. Yang and X. Yao. Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput., 9(11): 815-834, 2005.

[12] S. Yang and X. Yao. Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. on Evol. Comput., 2008.

14

