1,620 research outputs found

    Energy correlations for a random matrix model of disordered bosons

    Full text link
    Linearizing the Heisenberg equations of motion around the ground state of an interacting quantum many-body system, one gets a time-evolution generator in the positive cone of a real symplectic Lie algebra. The presence of disorder in the physical system determines a probability measure with support on this cone. The present paper analyzes a discrete family of such measures of exponential type, and does so in an attempt to capture, by a simple random matrix model, some generic statistical features of the characteristic frequencies of disordered bosonic quasi-particle systems. The level correlation functions of the said measures are shown to be those of a determinantal process, and the kernel of the process is expressed as a sum of bi-orthogonal polynomials. While the correlations in the bulk scaling limit are in accord with sine-kernel or GUE universality, at the low-frequency end of the spectrum an unusual type of scaling behavior is found.Comment: 20 pages, 3 figures, references adde

    Cost-benefit analysis for commissioning decisions in GEO600

    Get PDF
    Gravitational wave interferometers are complex instruments, requiring years of commissioning to achieve the required sensitivities for the detection of gravitational waves, of order 10^-21 in dimensionless detector strain, in the tens of Hz to several kHz frequency band. Investigations carried out by the GEO600 detector characterisation group have shown that detector characterisation techniques are useful when planning for commissioning work. At the time of writing, GEO600 is the only large scale laser interferometer currently in operation running with a high duty factor, 70%, limited chiefly by the time spent commissioning the detector. The number of observable gravitational wave sources scales as the product of the volume of space to which the detector is sensitive and the observation time, so the goal of commissioning is to improve the detector sensitivity with the least possible detector down time. We demonstrate a method for increasing the number of sources observable by such a detector, by assessing the severity of non-astrophysical noise contaminations to efficiently guide commissioning. This method will be particularly useful in the early stages and during the initial science runs of the aLIGO and adVirgo detectors, as they are brought up to design performance.Comment: 17 pages, 17 figures, 2 table

    Demonstration of detuned dual recycling at the Garching 30m laser interferometer

    Get PDF
    Dual recycling is an advanced optical technique to enhance the signal-to-noise ratio of laser interferometric gravitational wave detectors in a limited bandwidth. To optimise the center of this band with respect to Fourier frequencies of expected gravitational wave signals detuned dual recycling has to be implemented. We demonstrated detuned dual recycling on a fully suspended 30m prototype interferometer. A control scheme that allows to tune the detector to different frequencies will be outlined. Good agreement between the experimental results and numerical simulations has been achieved.Comment: 9 page

    A vertical inertial sensor with interferometric readout

    Get PDF
    High precision interferometers such as gravitational-wave detectors require complex seismic isolation systems in order to decouple the experiment from unwanted ground motion. Improved inertial sensors for active isolation potentially enhance the sensitivity of existing and future gravitational-wave detectors, especially below 30 Hz, and thereby increase the range of detectable astrophysical signals. This paper presents a vertical inertial sensor which senses the relative motion between an inertial test mass suspended by a blade spring and a seismically isolated platform. An interferometric readout was used which introduces low sensing noise, and preserves a large dynamic range due to fringe-counting. The expected sensitivity is comparable to other state-of-the-art interferometric inertial sensors and reaches values of 1010m/Hz10^{-10}\,\text{m}/\sqrt{\text{Hz}} at 100 mHz and 1012m/Hz10^{-12}\,\text{m}/\sqrt{\text{Hz}} at 1 Hz. The potential sensitivity improvement compared to commercial L-4C geophones is shown to be about two orders of magnitude at 10 mHz and 100 mHz and one order of magnitude at 1 Hz. The noise performance is expected to be limited by thermal noise of the inertial test mass suspension below 10 Hz. Further performance limitations of the sensor, such as tilt-to-vertical coupling from a non-perfect levelling of the test mass and nonlinearities in the interferometric readout, are also quantified and discussed

    Future Ground-Based Gravitational-Wave Observatories: Synergies with Other Scientific Communities

    Get PDF
    Planning for the development of a 3rd generation global gravitational-wave detector array is a multifaceted and complex effort that will necessarily need a high level of community input. Interfacing to extant and new stakeholders in the broader scientific constituencies is necessary to keep them aware of the activities taking place in the ground-based gravitational-wave community and receive input to inform and evolve the planning. In this report, we present the approaches GWIC and gravitational-wave collaborations and projects should consider taking to engage with broader community. This report is the fifth in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book, iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era, v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities (this report), and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    Treatment of sulfite evaporator condensates for recovery of volatile components

    Get PDF
    "Grant No. S801207, Program Element 1B2037."Project number handwritten on title page.Included in IPC/IPST collection for project 3100.PDF file missing pages, noted 11/15/2001.Estimated date is 1973.Prepared for Office of Research and Development, U.S. Environmental Protection Agenc

    Expanding the Reach of Gravitational Wave Astronomy to the Edge of the Universe: The Gravitational-Wave International Committee Study Reports on Next Generation Ground-based Gravitational-Wave Observatories

    Get PDF
    The first direct detection of gravitational waves emitted from a pair of merging black holes in 2015 has been heralded as one of most significant scientific breakthroughs in physics and astronomy of the 21st century. Motivated by the tremendous scientific opportunities now opened by gravitational-wave observatories and recognizing that to fully exploit the new field will require new observatories that may take 15 to 20 years from conception until operations begin, the Gravitational Wave International Committee (GWIC) convened a subcommittee to examine the path to build and operate a network of future ground-based observatories, capable of extending the observational GW horizon well beyond that currently attainable with the current generation of detectors. This report is the first in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe (this report), ii) The Next Generation Global Gravitational Wave Observatory: The Science Book, iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era, v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    Gravitational Wave Data Analysis: Computing Challenges in the 3G Era

    Get PDF
    Cyber infrastructure will be a critical consideration in the development of next generation gravitational-wave detectors. The demand for data analysis computing in the 3G era will be driven by the high number of detections as well as the expanded search parameter space for compact astrophysical objects and the subsequent parameter estimation follow-up required to extract the nature of the sources. Additionally, there will be an increased need to develop appropriate and scalable computing cyberinfrastructure, including data access and transfer protocols, and storage and management of software tools, that have sustainable development, support, and management processes. This report identifies the major challenges and opportunities facing 3G gravitational-wave observatories and presents recommendations for addressing them. This report is the fourth in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book, iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era (this report), v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    The Belle II SVD detector

    Get PDF
    The Silicon Vertex Detector (SVD) is one of the main detectors in the Belle II experiment at KEK, Japan. In combination with a pixel detector, the SVD determines precise decay vertex and low-momentum track reconstruction. The SVD ladders are being developed at several institutes. For the development of the tracking algorithm as well as the performance estimation of the ladders, beam tests for the ladders were performed. We report an overview of the SVD development, its performance measured in the beam test, and the prospect of its assembly and commissioning until installation

    Study of Upsilon(3S,2S) -> eta Upsilon(1S) and Upsilon(3S,2S) -> pi+pi- Upsilon(1S) hadronic trasitions

    Get PDF
    We study the Upsilon(3S,2S)->eta Upsilon(1S) and Upsilon(3S,2S)->pi+pi- Upsilon(1S) transitions with 122 million Upsilon(3S) and 100 million Upsilon(2S) mesons collected by the BaBar detector at the PEP-II asymmetric energy e+e- collider. We measure B[Upsilon(2S)->eta Upsilon(1S)]=(2.39+/-0.31(stat.)+/-0.14(syst.))10^-4 and Gamma[Upsilon(2S)->eta Upsilon(1S)]/Gamma[Upsilon(2S)-> pi+pi- Upsilon(1S)]=(1.35+/-0.17(stat.)+/-0.08(syst.))10^-3. We find no evidence for Upsilon(3S)->eta Upsilon(1S) and obtain B[Upsilon(3S)->eta Upsilon(1S)]<1.0 10^-4 and Gamma[Upsilon(3S)->eta Upsilon(1S)]/Gamma[Upsilon(3S)->pi+pi- Upsilon(1S)]<2.3 10^-3 as upper limits at the 90% confidence level. We also provide improved measurements of the Upsilon(2S) - Upsilon(1S) and Upsilon(3S) - Upsilon(1S) mass differences, 562.170+/-0.007(stat.)+/-0.088(syst.) MeV/c^2 and 893.813+/-0.015(stat.)+/-0.107(syst.) MeV/c^2 respectively.Comment: 8 pages, 16 encapsulated postscript figures, submitted to Phys.Rev.
    corecore