173 research outputs found

    Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    Get PDF
    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements-based estimate of the dust Sa for use in backscatter lidar inversion algorithms such as CALIOP

    Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties Near Source and Transport Regions

    Get PDF
    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol, between 2006-2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National D'tudes Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions

    Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    Get PDF
    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile

    Quantifying the Low Bias of CALIPSO's Column Aerosol Optical Depth Due to Undetected Aerosol Layers

    Get PDF
    The CALIOP data processing scheme only retrieves extinction profiles in those portions of the return signal where cloud or aerosol layers have been identified by the CALIOP layer detection scheme. In this study we use two years of CALIOP and MODIS data to quantify the aerosol optical depth of undetected weakly backscattering layers. Aerosol extinction and column-averaged lidar ratio is retrieved from CALIOP Level 1B (Version 4) profile using MODIS AOD as a constraint over oceans from March 2013 to February 2015. To quantify the undetected layer AOD (ULA), an unconstrained retrieval is applied globally using a lidar ratio of 28.75 sr estimated from constrained retrievals during the daytime over the ocean. We find a global mean ULA of 0.031 0.052. There is no significant difference in ULA between land and ocean. However, the fraction of undetected aerosol layers rises considerably during daytime, when the large amount of solar background noise lowers the signal to noise ratio (SNR). For this reason, there is a difference in ULA between day (0.036 0.066) and night (0.025 0.021). ULA is larger in the northern hemisphere and relatively larger at high latitudes. Large ULA for the Polar Regions is strongly related to the cases where the CALIOP Level 2 Product reports zero AOD. This study provides an estimate of the complement of AOD that is not detected by lidar, and bounds the CALIOP AOD uncertainty to provide corrections for science studies that employ the CALIOP Level 2 AOD

    Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Get PDF
    This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented

    A New Approach for Checking and Complementing CALIPSO Lidar Calibration

    Get PDF
    We have been studying the backscatter ratio of the two CALIPSO wavelengths for 3 different targets. We are showing the ratio of integrate attenuated backscatter coefficient for cirrus clouds, ocean surface and liquid. Water clouds for one month of nightime data (left:July,right:December), Only opaque cirrus classified as randomly oriented ice[1] are used. For ocean and water clouds, only the clearest shots, determined by a threshold on integrated attenuated backscatter are used. Two things can be immediately observed: 1. A similar trend (black dotted line) is visible using all targets, the color ratio shows a tendency to be higher north and lower south for those two months. 2. The water clouds average value is around 15% lower than ocean surface and cirrus clouds. This is due to the different multiple scattering at 532 nm and 1064 nm [2] which strongly impact the water cloud retrieval. Conclusion: Different targets can be used to improve CALIPSO 1064 nm calibration accuracy. All of them show the signature of an instrumental calibration shift. Multiple scattering introduce a bias in liquid water cloud signal but it still compares very well with all other methods and should not be overlooked. The effect of multiple scattering in liquid and ice clouds will be the subject of future research. If there really is a sampling issue. Combining all methods to increase the sampling, mapping the calibration coefficient or trying to reach an orbit per orbit calibration seems an appropriate way

    Female gamers’ experience of online harassment and social support in online gaming: a qualitative study

    Get PDF
    Female gaming is a relatively under-researched area, and female gamers often report experiencing harassment whilst playing online. The present study explored female experiences of social support while playing online video games, because of the previous research suggesting that females often experience harassment and negative interactions during game play. Data were collected from an online discussion forum, and comprised posts drawn from 271 female gamers. Thematic analysis of the discussions suggested that a lack of social support and harassment frequently led to female gamers playing alone, playing anonymously, and moving groups regularly. The female gamers reported experiencing anxiety and loneliness due to this lack of social support, and for many, this was mirrored in their experiences of social support outside of gaming. The female gamers frequently accepted the incorporation into their gaming of specific coping strategies to mitigate online harassment, including actively hiding their identity and avoiding all forms of verbal communication with other players. These themes are discussed in relation to relevant research in the area, along with recommendations for future research and consideration of possible explanations for the themes observed

    Solar Occultation Satellite Data and Derived Meteorological Products: Sampling Issues and Comparisons with Aura MLS

    Get PDF
    Derived Meteorological Products (DMPs, including potential temperature (theta), potential vorticity, equivalent latitude (EqL), horizontal winds and tropopause locations) have been produced for the locations and times of measurements by several solar occultation (SO) instruments and the Aura Microwave Limb Sounder (MLS). DMPs are calculated from several meteorological analyses for the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer, Stratospheric Aerosol and Gas Experiment II and III, Halogen Occultation Experiment, and Polar Ozone and Aerosol Measurement II and III SO instruments and MLS. Time-series comparisons of MLS version 1.5 and SO data using DMPs show good qualitative agreement in time evolution of O3, N2O, H20, CO, HNO3, HCl and temperature; quantitative agreement is good in most cases. EqL-coordinate comparisons of MLS version 2.2 and SO data show good quantitative agreement throughout the stratosphere for most of these species, with significant biases for a few species in localized regions. Comparisons in EqL coordinates of MLS and SO data, and of SO data with geographically coincident MLS data provide insight into where and how sampling effects are important in interpretation of the sparse SO data, thus assisting in fully utilizing the SO data in scientific studies and comparisons with other sparse datasets. The DMPs are valuable for scientific studies and to facilitate validation of non-coincident measurements

    An Agenda for Open Science in Communication

    Get PDF
    In the last 10 years, many canonical findings in the social sciences appear unreliable. This so-called “replication crisis” has spurred calls for open science practices, which aim to increase the reproducibility, replicability, and generalizability of findings. Communication research is subject to many of the same challenges that have caused low replicability in other fields. As a result, we propose an agenda for adopting open science practices in Communication, which includes the following seven suggestions: (1) publish materials, data, and code; (2) preregister studies and submit registered reports; (3) conduct replications; (4) collaborate; (5) foster open science skills; (6) implement Transparency and Openness Promotion Guidelines; and (7) incentivize open science practices. Although in our agenda we focus mostly on quantitative research, we also reflect on open science practices relevant to qualitative research. We conclude by discussing potential objections and concerns associated with open science practices
    corecore