2,956 research outputs found
Radiation Protection Group: Annual Report 2003
The RP Annual Report summarises the activities carried out by CERN’s Radiation Protection Group in the year 2003. It includes contribution from the EN section of the TIS/IE Group on environmental monitoring. Chapter 1 reports on the measurements and estimations of the impact on the environment and public exposure due to the Organisation’s activities. Chapter 2 provides the results of the monitoring of CERN’s staff, users and contractors to occupational exposure. Chapter 3 deals with operational radiation protection around the accelerators and in the experimental areas. Chapter 4 reports on RP design studies for the LHC and CNGS projects. Chapter 5 addresses the various services provided by the RP Group to other Groups and Divisions at CERN, which include managing radioactive waste, high-level dosimetry, lending radioactive test sources and shipping radioactive materials. Chapter 6 describes activities other than the routine and service tasks, i.e. development work in the field of instrumentation and research and support activities for future CERN projects or in RP-related domains
Response of neutron detectors to high-energy mixed radiation fields
Radiation protection around CERN's high-energy accelerators represents a major challenge due to the presence of complex, mixed radiation fields. Behind thick shielding neutrons dominate and their energy ranges from fractions of eV to about 1 GeV. In this work the response of various portable detectors sensitive to neutrons was studied at CERN's High-Energy Reference Field Facility (CERF). The measurements were carried out with conventional rem counters, which usually cover neutron energies up to 20 MeV, the Thermo WENDI-2, which is specified to measure neutrons up to several GeV, and a tissue-equivalent proportional counter. The experimentally determined neutron dose equivalent results were compared with Monte Carlo (MC) simulations. Based on these studies field calibration factors can be determined, which result in a more reliable estimate of H*(10) in an unknown, but presumably similar high-energy field around an accelerator than a calibration factor determined in a radiation field of a reference neutron sourc
Primordial helium recombination. I. Feedback, line transfer, and continuum opacity
Precision measurements of the cosmic microwave background temperature anisotropy on scales ℓ>500 will be available in the near future. Successful interpretation of these data is dependent on a detailed understanding of the damping tail and cosmological recombination of both hydrogen and helium. This paper and two companion papers are devoted to a precise calculation of helium recombination. We discuss several aspects of the standard recombination picture, and then include feedback, radiative transfer in He i lines with partial redistribution, and continuum opacity from H i photoionization. In agreement with past calculations, we find that He ii recombination proceeds in Saha equilibrium, whereas He i recombination is delayed relative to Saha due to the low rates connecting excited states of He i to the ground state. However, we find that at z<2200 the continuum absorption by the rapidly increasing H i population becomes effective at destroying photons in the He i 21Po-11S line, causing He i recombination to finish around z≃1800, much earlier than previously estimated
Phase-Coherent Dynamics of a Superconducting Flux Qubit with Capacitive-Bias Readout
We present a systematic study of the phase-coherent dynamics of a
superconducting three-Josephson-junction flux qubit. The qubit state is
detected with the integrated-pulse method, which is a variant of the pulsed
switching DC SQUID method. In this scheme the DC SQUID bias current pulse is
applied via a capacitor instead of a resistor, giving rise to a narrow
band-pass instead of a pure low-pass filter configuration of the
electromagnetic environment. Measuring one and the same qubit with both setups
allows a direct comparison. With the capacitive method about four times faster
switching pulses and an increased visibility are achieved. Furthermore, the
deliberate engineering of the electromagnetic environment, which minimizes the
noise due to the bias circuit, is facilitated. Right at the degeneracy point
the qubit coherence is limited by energy relaxation. We find two main noise
contributions. White noise is limiting the energy relaxation and contributing
to the dephasing far from the degeneracy point. 1/f-noise is the dominant
source of dephasing in the direct vicinity of the optimal point. The influence
of 1/f-noise is also supported by non-random beatings in the Ramsey and spin
echo decay traces. Numeric simulations of a coupled qubit-oscillator system
indicate that these beatings are due to the resonant interaction of the qubit
with at least one point-like fluctuator, coupled especially strongly to the
qubit.Comment: Minor changes. 21 pages, 15 figure
Massive Clumps in the NGC 6334 Star Forming Region
We report observations of dust continuum emission at 1.2 mm toward the star
forming region NGC 6334 made with the SEST SIMBA bolometer array. The
observations cover an area of square degrees with approximately
uniform noise. We detected 181 clumps spanning almost three orders of magnitude
in mass (3\Msun \Msun) and with sizes in the range 0.1--1.0 pc.
We find that the clump mass function is well fit with a power law
of the mass with exponent -0.6 (or equivalently ). The
derived exponent is similar to those obtained from molecular line emission
surveys and is significantly different from that of the stellar initial mass
function. We investigated changes in the mass spectrum by changing the
assumptions on the temperature distribution of the clumps and on the
contribution of free-free emission to the 1.2 mm emission, and found little
changes on the exponent. The Cumulative Mass Distribution Function is also
analyzed giving consistent results in a mass range excluding the high-mass end
where a power-law fit is no longer valid. The masses and sizes of the clumps
observed in NGC 6334 indicate that they are not direct progenitors of stars and
that the process of fragmentation determines the distribution of masses later
on or occurs at smaller spatial scales. The spatial distribution of the clumps
in NGC 6334 reveals clustering which is strikingly similar to that exhibited by
young stars in other star forming regions. A power law fit to the surface
density of companions gives .Comment: 16 pages, 11 figures, 4 tables. To appear in the Astrophysical
Journa
Production of Charged Pions, Kaons and Antikaons in Relativistic C+C and C+Au Collisions
Production cross sections of charged pions, kaons and antikaons have been
measured in C+C and C+Au collisions at beam energies of 1.0 and 1.8 AGeV for
different polar emission angles. The kaon and antikaon energy spectra can be
described by Boltzmann distributions whereas the pion spectra exhibit an
additional enhancement at low energies. The pion multiplicity per participating
nucleon M(pi+)/A_part is a factor of about 3 smaller in C+Au than in C+C
collisions at 1.0 AGeV whereas it differs only little for the C and the Au
target at a beam energy of 1.8 AGeV. The K+ multiplicities per participating
nucleon M(K+)/A_part are independent of the target size at 1 AGeV and at 1.8
AGeV. The K- multiplicity per participating nucleon M(K-)/A_part is reduced by
a factor of about 2 in C+Au as compared to C+C collisions at 1.8 AGeV. This
effect might be caused by the absorption of antikaons in the heavy target
nucleus. Transport model calculations underestimate the K-/K+ ratio for C+C
collisions at 1.8 AGeV by a factor of about 4 if in-medium modifications of K
mesons are neglected.Comment: 19 pages, 14 figures, accepted for publication in Eur. Phys. J.
- …