25,759 research outputs found
A likelihood method to cross-calibrate air-shower detectors
We present a detailed statistical treatment of the energy calibration of
hybrid air-shower detectors, which combine a surface detector array and a
fluorescence detector, to obtain an unbiased estimate of the calibration curve.
The special features of calibration data from air showers prevent unbiased
results, if a standard least-squares fit is applied to the problem. We develop
a general maximum-likelihood approach, based on the detailed statistical model,
to solve the problem. Our approach was developed for the Pierre Auger
Observatory, but the applied principles are general and can be transferred to
other air-shower experiments, even to the cross-calibration of other
observables. Since our general likelihood function is expensive to compute, we
derive two approximations with significantly smaller computational cost. In the
recent years both have been used to calibrate data of the Pierre Auger
Observatory. We demonstrate that these approximations introduce negligible bias
when they are applied to simulated toy experiments, which mimic realistic
experimental conditions.Comment: 10 pages, 7 figure
Vertical quantum wire realized with double cleaved-edge overgrowth
A quantum wire is fabricated on (001)-GaAs at the intersection of two
overgrown cleaves. The wire is contacted at each end to n+ GaAs layers via
two-dimensional (2D) leads. A sidegate controls the density of the wire
revealing conductance quantization. The step height is strongly reduced from
2e^2/h due to the 2D-lead series resistance. We characterize the 2D density and
mobility for both cleave facets with four-point measurements. The density on
the first facet is modulated by the substrate potential, depleting a 2um wide
strip that defines the wire length. Micro-photoluminescence shows an extra peak
consistent with 1D electron states at the corner.Comment: 4 pages, 4 figure
Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors
A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions
Local search for stable marriage problems with ties and incomplete lists
The stable marriage problem has a wide variety of practical applications,
ranging from matching resident doctors to hospitals, to matching students to
schools, or more generally to any two-sided market. We consider a useful
variation of the stable marriage problem, where the men and women express their
preferences using a preference list with ties over a subset of the members of
the other sex. Matchings are permitted only with people who appear in these
preference lists. In this setting, we study the problem of finding a stable
matching that marries as many people as possible. Stability is an envy-free
notion: no man and woman who are not married to each other would both prefer
each other to their partners or to being single. This problem is NP-hard. We
tackle this problem using local search, exploiting properties of the problem to
reduce the size of the neighborhood and to make local moves efficiently.
Experimental results show that this approach is able to solve large problems,
quickly returning stable matchings of large and often optimal size.Comment: 12 pages, Proc. PRICAI 2010 (11th Pacific Rim International
Conference on Artificial Intelligence), Byoung-Tak Zhang and Mehmet A. Orgun
eds., Springer LNA
Manipulation Strategies for the Rank Maximal Matching Problem
We consider manipulation strategies for the rank-maximal matching problem. In
the rank-maximal matching problem we are given a bipartite graph such that denotes a set of applicants and a set of posts. Each
applicant has a preference list over the set of his neighbours in
, possibly involving ties. Preference lists are represented by ranks on the
edges - an edge has rank , denoted as , if post
belongs to one of 's -th choices. A rank-maximal matching is one in which
the maximum number of applicants is matched to their rank one posts and subject
to this condition, the maximum number of applicants is matched to their rank
two posts, and so on. A rank-maximal matching can be computed in time, where denotes the number of applicants, the
number of edges and the maximum rank of an edge in an optimal solution.
A central authority matches applicants to posts. It does so using one of the
rank-maximal matchings. Since there may be more than one rank- maximal matching
of , we assume that the central authority chooses any one of them randomly.
Let be a manipulative applicant, who knows the preference lists of all
the other applicants and wants to falsify his preference list so that he has a
chance of getting better posts than if he were truthful. In the first problem
addressed in this paper the manipulative applicant wants to ensure that
he is never matched to any post worse than the most preferred among those of
rank greater than one and obtainable when he is truthful. In the second problem
the manipulator wants to construct such a preference list that the worst post
he can become matched to by the central authority is best possible or in other
words, wants to minimize the maximal rank of a post he can become matched
to
Creation of macroscopic superposition states from arrays of Bose-Einstein condensates
We consider how macroscopic quantum superpositions may be created from arrays
of Bose-Einstein condensates. We study a system of three condensates in Fock
states, all with the same number of atoms and show that this has the form of a
highly entangled superposition of different quasi-momenta. We then show how, by
partially releasing these condensates and detecting an interference pattern
where they overlap, it is possible to create a macroscopic superposition of
different relative phases for the remaining portions of the condensates. We
discuss methods for confirming these superpositions.Comment: 7 pages, 5 figure
Ultracold atoms in optical lattices
Bosonic atoms trapped in an optical lattice at very low temperatures, can be
modeled by the Bose-Hubbard model. In this paper, we propose a slave-boson
approach for dealing with the Bose-Hubbard model, which enables us to
analytically describe the physics of this model at nonzero temperatures. With
our approach the phase diagram for this model at nonzero temperatures can be
quantified.Comment: 29 pages, 10 figure
Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions
We demonstrate a method for preparing and detecting all eigenstates of a three-level microwave dressed system with a single trapped ion. The method significantly reduces the experimental complexity of gate operations with dressed-state qubits, as well as allowing all three of the dressed states to be prepared and detected, thereby providing access to a qutrit that is well protected from magnetic field noise. In addition, we demonstrate individual addressing of the clock transitions in two ions using a strong static magnetic field gradient, showing that our method can be used to prepare and detect microwave dressed states in a string of ions when performing multi-ion quantum operations with microwave and radio frequency fields. The individual addressability of clock transitions could also allow for the control of pairwise interaction strengths between arbitrary ions in a string using lasers
Phase-field-crystal model for liquid crystals
Based on static and dynamical density functional theory, a
phase-field-crystal model is derived which involves both the translational
density and the orientational degree of ordering as well as a local director
field. The model exhibits stable isotropic, nematic, smectic A, columnar,
plastic crystalline and orientationally ordered crystalline phases. As far as
the dynamics is concerned, the translational density is a conserved order
parameter while the orientational ordering is non-conserved. The derived
phase-field-crystal model can serve for efficient numerical investigations of
various nonequilibrium situations in liquid crystals
- …
