A quantum wire is fabricated on (001)-GaAs at the intersection of two
overgrown cleaves. The wire is contacted at each end to n+ GaAs layers via
two-dimensional (2D) leads. A sidegate controls the density of the wire
revealing conductance quantization. The step height is strongly reduced from
2e^2/h due to the 2D-lead series resistance. We characterize the 2D density and
mobility for both cleave facets with four-point measurements. The density on
the first facet is modulated by the substrate potential, depleting a 2um wide
strip that defines the wire length. Micro-photoluminescence shows an extra peak
consistent with 1D electron states at the corner.Comment: 4 pages, 4 figure